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ABSTRACT This article considers the problem of efficient sampling for toxicity detection in competitive
online video games. Video game service operators take proactive measures to detect and address undesirable
behavior, seeking to focus these costly efforts where such behavior is most likely. To achieve this objective,
service operators need estimates of the likelihood of toxic behavior. When no pre-existing predictive
model of toxic behavior is available, one must be estimated in real-time. To this end, we propose
a contextual bandit algorithm that uses a small set of variables, selected based on domain expertise,
to guide monitoring decisions. This algorithm balances exploration and exploitation to optimize long-term
performance and is designed intentionally for easy deployment in production environments. Using data from
the popular first-person action game Call of Duty®: Modern Warfare®III, we show that our algorithm
consistently outperforms baseline algorithms that rely solely on individual players’ past behavior, achieving
improvements in detection rate of up to 24.56 percentage points or 51.5%. These results have substantive
implications for the nature of toxicity and illustrate how domain expertise can be harnessed to help video
game service operators detect and address toxicity, ultimately fostering a safer and more enjoyable gaming
experience.

INDEX TERMS Call of Duty®: Modern Warfare®III, competitive online video games, contextual bandit
algorithms, toxicity detection.

I. INTRODUCTION
Toxicity in competitive online video games has well-
documented and widely recognized detrimental effects,
including reduced user engagement and potential harm to
psychological well-being [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13]. These prompt video game
service operators to take proactive measures to monitor and
address such behavior. However, these efforts are resource-
intensive. Consequently, service operators seek to direct
their interventions where toxicity is most prevalent, thereby
maximizing their impact.

This article considers the problem of efficient sampling
for toxicity detection in competitive online video games.
By leveraging advanced computational methods to enhance
toxicity detection, we aim to equip video game service
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operators with tools to detect and eventually address toxicity
more effectively while aligning these efforts with their
resource constraints. The ultimate goal is to create a safer,
more enjoyable gaming experience for players.

We focus our attention on a setting wherein video game
service operators must choose whether to monitor each
player’s in-game voice interactions at the start of every
match. In doing so, their objective is to maximize the
detection of toxic behavior while minimizing monitoring
costs, as measured by the volume of monitored voice
interactions. In this context, efficiency requires that no
alternative policy can achieve a higher detection rate at equal
cost or the same detection rate at a lower cost. To meet this
objective, service operators seek to monitor only interactions
where toxicity is sufficiently likely to occur.

To make informed monitoring decisions, video game
service operators need estimates of the likelihood of toxic
behavior. However, a predictive model of toxic behavior may
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not always be available, such as immediately after a game’s
release. In these cases, service operators must estimate a
predictive model in real-time, a process inherently involving
some exploration. In this context, service operators may find
it valuable to monitor players’ in-game voice interactions not
only when they are confident that toxic behavior is likely,
making optimal monitoring decisions based on existing data,
but also when uncertainty is high, even if toxicity seems
a priori unlikely, to gather more data and improve the
accuracy of future predictions. Throughout this process, the
ultimate goal of service operators is to balance exploration
and exploitation in order to optimize long-term performance.

To address the tension between static and dynamic
incentives, we propose a contextual bandit algorithm that
adaptively and dynamically learns where to optimally
allocate computational resources for toxicity detection. This
algorithm determines which players’ in-game voice interac-
tions to monitor to maximize the detection of toxic behavior
while minimizing monitoring costs, that is, by monitoring
the fewest players in the fewest matches necessary. It bases
its decisions on a handful of readily observable contextual
features that are, according to domain expertise, associated
with toxic behavior. It is designed intentionally for ease of
deployment in production environments.

We compare the performance of our proposed algorithm
against two baseline rule-based algorithms that reflect
standard practices in the video game industry. Whereas our
algorithm leverages contextual features to inform decision-
making, these baseline algorithms make decisions solely
based on individual players’ past behavior—specifically,
whether they have previously engaged in toxic behavior.
We perform this analysis within the context of the popular
first-person action video game Call of Duty®: Modern
Warfare®III, focusing specifically on its primary multi-
player game mode, Team Deathmatch. The results show
that our proposed algorithm consistently outperforms the
baseline algorithms, achieving considerable improvements in
the detection rate of toxic behavior, with increases of up to
24.56 percentage points (pp.) or 51.5%.

Substantively, these findings imply that some contextual
factors are strongly associated with a higher likelihood
of players engaging in toxic behavior, allowing for the
effective optimization of monitoring strategies. Remarkably,
monitoring decisions based on these factors have a system-
atically better performance than those made solely based
on individual players’ past tendencies toward toxicity, chal-
lenging the view that toxicity is an inherently idiosyncratic
phenomenon.

This article is structured as follows.We begin by discussing
how our work relates to previous research. Next, we describe
the data used in our analysis. We then define the optimization
problem faced by video game service operators, review
factors correlated with toxicity, and outline our proposed
algorithm. Afterward, we present the results of an experiment
that simulates and compares the performance of our proposed
algorithm with two baseline algorithms. We conclude by

discussing the implications of our findings and outlining
potential avenues for future research.

II. RELATED WORK
This paper contributes to the growing research on rein-
forcement learning for content moderation on online plat-
forms [14]. Like prior work in this area, we address the
challenge of efficiently allocating costly detection resources,
such as expensive computational models or human moder-
ators, to potential content violations by combining diverse
features and signals. Our primary contribution is applied: we
demonstrate how video game service operators, drawing on
their domain expertise, can implement a contextual bandit
algorithm to optimize their detection and moderation efforts.
Specifically, we adapt an algorithm initially designed for
personalized news recommendation to the unique demands
of toxicity detection in competitive online video games [15].

Our study also relates to the extensive literature on
content moderation and the detection of undesirable behavior
in online communities [16], [17], [18], [19], [20], [21],
[22], [23], [24]. This work has highlighted the considerable
challenges in detecting and addressing undesirable behavior
at scale. In response, our study proposes a novel approach to
improve the efficiency of these computationally demanding
efforts, offering a potential solution to enhance their scalabil-
ity.

Lastly, we draw on substantive findings from the literature
on toxicity in competitive online video games to identify
contextual features that may predict toxic behavior and
inform monitoring decisions [5], [12], [13], [25], [26], [27],
[28], [29], [30], [31], [32], [33]. These variables include
skill level, disparities in skill between the player and others,
the presence of teammates from the same party, the number
of matches previously played in the current session, and
moderation reports filed by or against the player. The
variables are further described and discussed in Section V.

III. DATA
We analyze proprietary data from Call of Duty, a popular
first-person action video game franchise published by Activi-
sion®. We focus on Call of Duty: Modern Warfare III and
its most popular multiplayer game mode, Team Deathmatch.
In this game mode, players are divided into two equally
sized teams and compete to achieve the highest number of
eliminations. After a brief pause, eliminated players reappear
at a different location on the map. A team wins by reaching
a predetermined elimination limit first or accumulating the
most eliminations by the end of the match.

Since 2023, Activision has partnered with Modulate™,
a startup developing intelligent voice technology to identify
and combat online toxicity, and integrated its proprietary
voice chat moderation technology, ToxMod™, into its gaming
platforms [34]. ToxMod is a voice moderation technology
that analyzes online speech for emotion, volume, transcribed
content, intention, and other related signals to identify
harmful or malicious content [35]. These signals are input
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TABLE 1. Reward structure.

into machine learning models that classify the primary type
of harm present in an audio clip. The voice chat moderation
technology’s initial beta rollout began in North America on
August 30, 2023, within Call of Duty: Modern Warfare II
and Call of Duty: Warzone™, followed by a global release
(excluding the Asia-Pacific region) that coincided with the
launch of Call of Duty: Modern Warfare III on November 10,
2023. During our observation period, ToxMod only supported
English.1

ToxMod offers exceptional data on toxic behavior in
competitive online video games, serving as the basis of our
analysis. Our dataset comprises data from a representative
sample of matches in Team Deathmatch mode monitored by
ToxMod during the first month following the game’s launch,
from November 10 to December 10, 2023. Our sample
consists of 207,338,296 observations, each representing a
player in a match, drawn from 15,644,547 matches and
8,798,876 players.2 We categorize a player as having engaged
in toxic behavior during a game if ToxMod flagged at least
one of their voice interactions as toxic during that match,
thereby binarizing ToxMod’s output.

IV. PROBLEM FORMULATION
We formalize the decision problem faced by video game
service operators in choosing whether to monitor a player’s
in-game voice interactions. We focus our attention on a
setting wherein service operators can choose, at the start of
every match, to monitor a player’s in-game voice interactions
for the duration of that match. Service operators seek to
monitor in-game voice interactions to detect and ultimately
address toxic behavior. Monitoring is costly and provides no
actionable insight unless toxicity is detected. Consequently,
service operators seek to maximize the detection of offenses
while minimizing the volume of monitored in-game voice
interactions.

We assume that if a video game service operator opts to
monitor a player’s in-game voice interactions, they incur a
fixed cost c > 0, which erodes their reward. In turn, the
service operator earns rewards that depend on the player’s
behavior: they receive a reward of 1 if toxic behavior is
detected and a reward of 0 otherwise. On the other hand, if the

1ToxMod now supports English, Spanish, and Portuguese, with French
and German coming soon in upcoming game releases.

2To protect confidential business information, we cannot disclose the
exact proportion of the universe represented by this sample. However, we can
assure readers that the data was carefully sampled to be representative.

service operator chooses not to monitor the player’s voice
interactions, they receive a fixed reward of 0 regardless of
the player’s behavior. Rewards conditional on the monitoring
decision and the player’s behavior are summarized in Table 1.
Note that this reward structure treats false positives—players
who are monitored despite not engaging in toxicity—and
false negatives—players who engage in toxicity but are not
monitored—asymmetrically. In particular, it penalizes the
former but not the latter.

In this framework, video game service operators seek
to selectively monitor players’ in-game voice interactions
based on their behavior. Specifically, they prefer to monitor
a player’s in-game voice interactions when they engage in
toxicity and not to monitor them when they do not engage in
such behavior. Given the uncertainty of the player’s behavior,
these preferences translate into the following static decision
rule: it is optimal to monitor a player’s in-game voice
interactions when the likelihood of toxic behavior surpasses
the cost of monitoring:

P (Player engages in toxicity) > c. (1)

In other words, to optimize toxicity detection resources,
video game service operators should monitor a player’s in-
game voice interactions only when the likelihood of toxic
behavior exceeds some threshold, ensuring that the gathered
data is likely to be actionable.

V. TOXICITY CORRELATES
To implement the static decision rule defined above, video
game service operators need estimates of the likelihood of
toxic behavior. Previous research on toxicity in competi-
tive online video games has identified contextual features
correlated with such behavior. Many of these features are
easily observable before the beginning of a match, making
them valuable for estimating the likelihood of toxic behavior.
We can then use these predictions to inform and guide
monitoring decisions.

Table 2 lists eight of these variables, describing their
expected relationship with toxicity and supported by relevant
references. Descriptive statistics for these variables and toxic
behavior in our dataset are presented in Table 3. Table 4
presents the estimates of linear and logistic regressions of a
player’s behavior with these covariates. Note that the linear
regression coefficient and standard error estimates are all
scaled by a 10−6 factor to enhance interpretability.

Regression results indicate that all covariates, except for
the average skill difference with teammates and the number
of matches played in the current session, consistently exhibit
a statistically significant relationship with toxic behavior.
These results confirm that these variables can predict toxic
behavior and, in turn, guide monitoring decisions.

VI. BANDIT ALGORITHMS
Conclusions drawn in the previous section on toxicity

correlates were derived a posteriori from the entire dataset.
However, such historical data may not always be available
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FIGURE 1. Algorithm workflow.

Algorithm 1 LinUCB Algorithm
Hyperparameters: δ ∈ R+, c ∈ R+
A← Id {d-dimensional identity matrix}
b← 0d {d-dimensional zero vector}
for t = 0 to T − 1 do {Loop over days}

θ̂← A−1b {Update coefficients daily}
for n = 0 to Nt − 1 do {Loop over observations}

Observe contextual features: xt,n ∈ Rd

pt,n← θ′xt,n + δ

√
x′t,nA

−1xt,n
Monitor if pt,n > c, do not monitor otherwise
ifMonitor then
Observe player behavior: rt,n ∈ {0, 1}
A← A+ xt,nx′t,n {If monitored, update data}
b← b+ rt,nxt,n

end if
end for

end for

when predictions are needed, such as immediately after
a game’s release. In these cases, video game service
operators must estimate a model of the likelihood of toxic
behavior in real-time. This requires algorithms that can
make monitoring decisions based on currently available data
while continuously learning from new data to improve future
decisions.

In addition to solving the static optimization problem
outlined in Section IV, video game service operators face a
dynamic trade-off when estimating models in real time: they
may want to monitor players’ in-game voice interactions not
only when they are confident that toxic behavior is likely,
in which case they exploit the available data, but also when
uncertainty is high, in which case they explore to refine

future predictions and improve future decisions. As service
operators explore and collect more data, they seek to optimize
long-term performance by exploiting as much information as
possible. This exploration-exploitation trade-off is precisely
the target of bandit algorithms.

For anyone familiar, there is a clear analogy between the
optimization problem defined above and bandit problems:
at the start of every match and for each player, video
game service operators must choose whether to pull the
‘‘monitor’’ arm or the ‘‘not monitor’’ arm. The ‘‘monitor’’
arm generates stochastic rewards determined by the player’s
behavior, whereas the ‘‘not monitor’’ arm generates fixed
known rewards.

We propose to make monitoring decisions based on
the LinUCB algorithm, with the input covariates listed in
Section V [15]. These variables were carefully selected based
on domain expertise. We retain all features, including those
with statistically insignificant coefficients, to emulate the
performance of an algorithm that does not initially have
access to the complete dataset. In contrast, the statistical
significance of these features is assessed using all available
data in that section. Retaining all covariates provides a con-
servative estimate of our algorithm’s performance. Although
excluding insignificant variables may improve performance,
we defer such optimization to future work.3 In that regard,
regularization methods such as LASSO or elastic net could
enable the model to select features endogenously, offering a
promising direction for future study.

3The Supplementary Material includes a table presenting the results of
a feature ablation study in which individual features were removed one at
a time. The results reveal that omitting certain features can lead to modest
improvements in our algorithm’s performance.
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TABLE 2. Toxicity correlates.

The LinUCB algorithm is formally outlined in Algo-
rithm 1. Henceforth, let d denote the number of contextual
features, t index the days (with a total of T ), and n index
the observations on each day (with Nt total observations on
day t). Each observation represents a single player in a single
match.

The algorithm models the expected reward from monitor-
ing a player’s in-game voice interactions or, in other words,
the likelihood that a player engages in toxic behavior as a
linear function of the covariates, with an unknown coefficient

TABLE 3. Descriptive statistics.

vector θ estimated using ridge regression:

θ̂ =
(
X ′X + I

)−1 X ′r, (2)

where X is the matrix formed by concatenating the covariate
values from all previously monitored players and matches,
and r is a vector indicating the presence of toxicity in
each case.4 The linear specification streamlines estimation
and inference, simplifying the algorithm’s deployment in
production environments. It also promotes model parsimony,
mitigating overfitting risks. Future research could explore
non-linear methods, such as random forests or kernelized
UCB [36], [37], though their application may be limited
by computational challenges associated with our dataset’s
size.

For each new observation, the algorithm estimates the
expected rewards frommonitoring based on the data collected
on previous days. The algorithm then applies an Upper Con-
fidence Bound (UCB) arm-selection strategy: the ‘‘monitor’’

4Note that Equation (2) can be evaluated even in the absence of historical
data. In such cases, one can replace X with a zero vector.
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TABLE 4. Regression results.

arm is pulled if and only if the expected rewards plus the
product of this expectation’s standard error and a predefined
exploration factor δ exceeds the monitoring cost c:

x′t,nθ̂︸︷︷︸
Expected

Rewards

+δ

√
x′t,n

(
X ′X + I

)−1 xt,n︸ ︷︷ ︸
Standard Error

> c, (3)

where xt,n is the covariate vector for observation n on
day t . If a player’s behavior is monitored during a match,
a binary variable rt,n encodes whether they acted in a toxic
manner.

The exploration factor δ reflects the value that video game
service operators place on gathering more information to
reduce predictive uncertainty and improve future decisions.
A higher value of this parameter reflects a greater inclination
for exploration. On the other hand, the cost parameter c
captures how strongly service operators prefer to confine
monitoring to contexts with a high likelihood of toxicity.
It regulates the volume of monitored observations, with
higher values resulting in less monitoring.

Instead of updating the model coefficients after every
observation, the model coefficients are updated at the end of
each day based on the observations collected throughout that
day. The updated model is then used to inform monitoring
decisions for the next day. Daily updates make the model
easier to deploy in production environments. In particular,
daily updates enable batch processing, significantly reducing
the computational costs of updating the model coefficients.
While this approach still supports learning over time, it may
slow the overall learning speed. Increasing the frequency of
updates (e.g., hourly updates) can mitigate this by enabling
the model to learn more quickly from new data. However,
our analysis suggests that hourly updates offer negligible

performance improvements.5 The workflow of the algorithm
is illustrated in Figure 1.

This bandit algorithm addresses the ‘‘cold-start problem’’
encountered by video game service operators upon a game’s
release. With no pre-existing model to predict toxic behavior,
one must be estimated in real-time, which inherently involves
some exploration. In this context, monitoring a player’s
voice interactions can still be valuable even when the
immediate cost exceeds the expected rewards as long as the
collected data makes future predictions and decisions more
accurate. Over time, as more data is collected, the algorithm
gradually shifts toward exploitation, relying primarily on
expected rewards to make monitoring decisions. However,
when the algorithm lacks enough information to make an
informed decision for a specific set of contextual features,
it retains the option to keep exploring. Also, by continually
updating model coefficients, the algorithm adapts to evolving
conditions.

We compare the performance of our proposed LinUCB
algorithm against two baseline algorithms that reflect current
practices in the video game industry: the deterministic
and probabilistic Explore-Then-Commit algorithms [38].
Unlike LinUCB, which optimizes decisions by pooling
information across all players, these algorithms identify
optimal monitoring decisions based on individual players’
prior history of toxic behavior. This is based on the premise
that past toxic players are more likely to engage in similar
behavior in the future [12], [25], [31], [32]. The deterministic
Explore-Then-Commit algorithm monitors each player for a
fixed and predetermined number of matches and continues
monitoring a player beyond this probationary period if
they are observed to engage in toxic behavior at least
once. In contrast, the probabilistic Explore-Then-Commit
algorithm randomly monitors a fixed share of observations
and continues monitoring a player if they are observed to
engage in toxic behavior at least once. This algorithm is
equivalent to an ε-greedy algorithm: with probability ε,
service operators explore by monitoring, and with probability
1 − ε, their decision to monitor is based on the player’s
observed past behavior.

VII. EXPERIMENTAL METHODOLOGY
We simulate the performance of our proposed algorithm
and that of baseline algorithms on the dataset described in
Section III. In this experiment, only a subset of the matches
and players is monitored, with monitoring decisions made
dynamically by the bandit algorithms described earlier. These
algorithms rely solely on the data available at the time of
decision-making. On the other hand, their performance is
assessed on future data that we, as analysts, can observe
but remains unobserved by the algorithms unless and until
they choose to observe the corresponding match and player.

5The SupplementaryMaterial includes a table comparing the performance
of our proposed LinUCB algorithm under hourly and daily update schedules.
The results indicate that the algorithm performs nearly identically in both
scenarios.
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TABLE 5. Bandit algorithms performance comparison.

FIGURE 2. Bandit algorithms performance.

This approach amounts to dynamically shifting training and
evaluation data, mirroring real-world constraints whereby
bandit algorithms can only learn from previously collected
data.

We compare the performance of the different algorithms
in selecting which players and matches to monitor. To reflect
the objectives of video game service operators, we assess
algorithm performance based on detection rate or recall,
defined as the share of toxic behavior detected (after being
monitored) relative to all toxic behavior that occurred.We can
calculate this metric because, as analysts, we have access to
the complete dataset, including occurrences of toxicity not
monitored by the algorithms in our simulation. For a given
proportion of matches and players monitored, the optimal
algorithm is the one that maximizes the detection rate.

VIII. RESULTS
Figure 2 illustrates the detection rate of toxic behavior for
each algorithm as a function of the proportion of monitored
observations. Each point corresponds to a different value
of the exploration parameter δ for LinUCB, a different
number of exploration steps for the deterministic Explore-
Then-Commit algorithm, and a different exploration proba-
bility for the probabilistic Explore-Then-Commit algorithm.
The exploration parameter for LinUCB was tuned for

convenience, and the results are not sensitive to its exact
value. The dashed diagonal line represents the performance
of uniform random sampling.

Our proposed LinUCB algorithm consistently outperforms
the baseline algorithms for any given share of monitored
observations. The probabilistic Explore-Then-Commit algo-
rithm ranks second, except for the highest share of monitored
observations, for which the deterministic Explore-Then-
Commit algorithm ranks second.

Table 5 presents a detailed comparison of the performance
of our proposed algorithm against baseline algorithms for
different shares of monitored observations. The results for
the second-best alternative to our proposed algorithm are
highlighted in grey.

Again, the performance of our proposed LinUCB algo-
rithm is consistently superior to baseline algorithms, increas-
ing the detection rate by up to 24.56 pp. or 51.5%. In other
words, holding monitoring costs constant, our proposed
algorithm can detect up to 51.5% more offenses than the
second-best alternative, providing an equivalent volume of
additional actionable insights.

We note that the detection rate increases with the share
of monitored observations for all algorithms. However, the
marginal gains in detection rate diminish as the share of
monitored observations increases, meaning that detecting
more offenses becomes increasingly costly. Finally, the
absolute and relative improvements in detection rate achieved
by our proposed algorithm follow an inverted-U shape,
decreasing as monitoring coverage expands, except for the
lowest monitoring levels.

IX. DISCUSSION AND CONCLUSION
In this paper, we have considered the problem of efficient
toxicity detection in competitive online video games. Using
data from the popular first-person action video game Call
of Duty: Modern Warfare III, we simulated the performance
of various bandit algorithms in optimizing monitoring
decisions. Our proposed LinUCB algorithm, optimizing
monitoring decisions based on a small set of contextual
features, consistently outperformed random sampling and
two baseline rule-based algorithms that reflect standard
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practices in the video game industry. Therefore, our pro-
posed algorithm can considerably enhance the efficiency
of toxicity detection and support video game service
operators in fostering a safer and more enjoyable gaming
environment. The design of our algorithm prioritizes ease
of deployment, streamlining its practical implementation
at scale.

The superior performance of our contextual algorithm over
benchmark algorithms that rely on individual players’ history
of toxic behavior has substantive implications for the nature
of toxicity. One perspective views toxicity as an inherently
idiosyncratic phenomenon, largely independent of context,
with a small set of players spontaneously and repeatedly
engaging in such behavior. An alternative perspective sees
toxicity as the reflection of specific contextual factors
that nudge players toward toxic behavior. Our findings
challenge the first perspective by revealing that: (i) a
handful of contextual features are strongly associated with
an increased likelihood of toxic behavior, and (ii) monitoring
decisions made based on these factors are more effective
than those based on individual players’ history of toxic
behavior.

To conclude, multiple avenues exist for expanding on this
study. For instance, future research should explore additional
covariates to improve the accuracy of toxic behavior pre-
dictions, including accounting for past moderation actions.
Evaluating our proposed algorithm’s performance beyond
one month and across video games from different genres
would also be valuable. On this point, we anticipate that
various games and genres will require different features to
predict toxicity accurately. Lastly, further investigating the
application of bandit algorithms to enhance and optimize
human moderation efforts, arguably even more costly than
automated toxicity detection, offers an exciting direction for
further research.
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