¢ Digital
'« Dragons

Rendering of

GALI'DUTY

INFINITE WARFARE

Michal Drobot

Principal Rendering Engineer

infinity ward ACIVISION.

© 2017 Activision Publishing, Inc.

This talk will present high level overview of some core rendering components of COD
: Infinite Warfare

CALI'DUTY

INFINITE WARFARE

© 2017 Activision Publishing, Inc.

COD : IW is the latest installment of Call of Duty franchise.
From rendering perspective it was a huge challenge.

Presentation Outline

Forward+ Data Structures
Mesh Rendering

Shadow Map Cache
Particle Lighting
Multi-Res Renderer
Reflections & Refractions
Volumetric Renderer

15
%2
3
4.
5.
6.
/.
8.

Texture Packer

g & Digital
infinity ward ’: ‘ D'r%'g% I

Forward+ Data Structures

infinity ward

Voxel Tree

* World space Oct-tree

* Precomputed with occlusion
* i.e. lights would be shadowed and contained to their volume of influence only

* Allows easy precomputed / cached out-of-frustum 3D lookups

* Expensive traversal
* Need to traverse hierarchy, multiple S misses, indirect reads
* Good candidate for async compute

* Significant pre-computation time
* Leaf payloads
* Lights
* Roots for lightgrid caching
* Visibility
4 Digital

infinity ward ‘<~ Dragons

Used for out of frustum 3D lookups for : lights in dynamic reflection probes, lights for
dynamic lightmapped particles, tetrahedron Global lllumination lightgrid

Colors represent amount of lights hitting each pixel. Each voxel stores preculled lights.
It is shown here to demonstrate how world space voxels are visualized on surfaces (
not used for actual scene lighting).

Frustum Space

* Tiled based bitmask
» 8x8 pixel size
* Used for opaque geometry

* Cluster based bitmask

* Size to match 4x4x4 kernels from volumetrics
* 160/4* 90/4* 128/4=40x 25 x 32 @1080p
* Used for transparent geometry and volumetrics

sl \// & Digital
infinity ward o D-rg(,;gc;ns

* Items indexed by bits
* Lights
* Reflection Probes
* Density Volumes
* Decals [0]

infinity ward

Frustum Space

S

Digital

‘'« Dragons

infinity ward

Mesh Rendering

10

——

Geometry,overviews,
~

b

© 2017 Activision Publishing; Inc.

11

=9

© 2017 Activision Publishing, Inc.

Smodels / Xmodels
Static Models / Dynamic Models
Similar to standard game engine meshes
Used for props, characters, vehicles, weapons etc.

12

BSP only

© 2017 Activision Publishing; Inc.

BSP

Radiant brush based geometry

Blocking out levels

Terrain

Static Structural parts of environments

Multiple brushes with individual materials get merged together into optimized
sub-meshes and sub-shaders.

Allows unique detailing of the world at high performance

Support Tessellation & Displacement mapping

13

BSP brushes:

© 2017 Activision Publishing, Inc.

Wireframe of base BSP

Good candidate for physics / Al raycasts. Simple geo, easy to iterate on.

14

BSP /w Adaptive .
Tessellation & Displ

© 2017 Activision Publishing, Inc.

Base BSP with enabled Adaptive Tessellation and Displacement Mapping.
Adaptively tessellate based on displacement deltas, distance to camera, patch angle

to camera.
Each generated sub-patch goes through GPU frustum, occlusion and backface culling.

15

T&D OFE

™

© 2017 Activision Publishing, Inc.

16

© 2017 Activision Publishing; Inc.

T&D makes a huge visual impact at moderate adaptive performance hit.
Here exaggerated for visual presentation.

17

infinity ward

Shadow Map Cache

18

ESM Shadow Map Cache : Motivation

* Tessellation geometry expensive in shadow (-
map rendering

* Majority of lights are stationary
* Many lights

* <256 in view frustum

* Many shadows
* <128 in view frustum

infinity ward

19

ESM Shadow Map Cache

* PCF too expensive in F+ (VGPR pressure) @%ﬁ"

IR

* Emphasis on static high quality shadowed
lights and caching

* Exponential Shadow Maps
* 51272 16bit UNORM
* Downsampled from 102472 shadow map

* 3x3 Gaussian filtered
* Artistic controls for filtering

* Pre-filter once and cached

infinity ward

© 2017 Activision Publishing, Inc.

20

Request SMs per | Copy & ESM

view Render dynamic geo to Active Shadow Map Filter
Active SM 4-8 x 102412 D16 Active SM to
l Stale Cache

(Async Cs)

Un- .
changed Copy static geo SM

& FIN Copy Static SM Render Static to Static Cache
in Stale from Static Cache Geometry (Async CS)

Cache? to Active SM To Active SM

Static Cache
16 x 102472 D16

Pick 4-8 most
important SMs

Stale Cache

128 x 51242 ESM % Digital
infinity ward (..~ Dragons

Caching algorithm:
Request SMs per view
> get all shadow maps visible in view that passed culling tests
Check Stale Cache for SMs that DO NOT need update
> Is the light resident in Stale Cache?
> Did the light move in last frame?
> Did anything move within light frustum in last frame?
> Was an update forced?
Pick 4-8 most important SMs
> Sort by priority
> Artist driven priority (player flashlight etc.)
> Distance, projected size, intensity
For each picked light
Check Static Cache for SM — static cache hold actual D16 shadow maps that contain
only static geometry.
> Light is cached in Static Cache
> Copy Static SM from Static Cache to Active
> Light is NOT cached in Static Cache
> Render static geometry to Active Cache
> Copy static geo Shadow Map to Static Cache
Render dynamic geo to Active SM — Active Cache has 4 — 8 D16 shadows maps.
Technically we only need 1, however we overlap multiple async compute jobs from

shadow cache system, over rendering of actual shadow maps (i.e. copies, ESM
filtering, downsampling, shadow map clears). So CS jobs for shadow map 0 would be
overlapped with rendering of shadow map 1.

Copy and ESM process Active SM to Stale Cache

21

ESM Shadow Map Cache : Performance

* Cache copies and ESM jobs use Async Compute
* Overlapped with ‘next” shadow map generation work
* Average real cost : < 0.1ms per shadow map exclusive of rendering

* Low sampling cost in Forward+
* ALU Fully amortized
* No register (VGPR) impact

sl & Digital
infinity ward ’: ‘ D'r%'g% I

Deferred Sun Shadows

Need high quality shadows
Cinematic characters
View model
Need multiple high resolution object space shadow maps
Too much pressure on standard Shadow Map Cache
High number of active slots needed

23

Deferred Sun Shadows
& Screen Space Shadows [1]

Screen Space Shadow
Do a depth buffer raytrace in direction of the light source
Deferred pass for Sun Only
Optimized for view model (depth bounds / stencil test)
Works well if run on whole scene

24

No SS Shadows Strongest light
per-pixel
SS Shadows

Digital

infinily w ©2017 Activision Publishing, Inc. {__. Dragons

Integrated into F+
Store strongest light source per-pixel
Set by artists as key light or derived from runtime computation as max(
intensityO0...)
Perform a single trace in key light direction

25

infinity ward

Particle Lighting

26

Particle Lighting with lightmaps

* Each quad automatically allocates
1x1 - 32x32 lightmap tile

* Resolution depends on projected screen space
size of quad

* Per each texel
* Store position for each sampling point

fg

Y
* CS samples lightgrid for ambient contribution ’ B ok 5
"BEE |

|

* CS primary lighting
* World Space Voxel Tree
» Sampling points can be out of frustum bounds
* Transform and store as RGB SH1

g & Digital
infinity ward ’: ‘ D'r%'g% I

27

Deferred nghtmap

* 51222 RGBFP11_11 10
* Omni-directional lighting
* Simple particles

* 3x512"2 RGBAFP16_16_16_16
* Directional lighting

* Stored as RGB x SH1
(4 coefficients stored in RGBA)

* Complex particles with normal maps

* Normal mapped particles support
specular reflections through F+

* Support for
* VFX impact marks
* Decal meshes

infinity ward

28

Simple Lit Particles

© 2017 Activision Publishing, Inc.

Simple Lit particles with omni-directional lighting.

Complex lighting scenario. Strong direction sun lights with color tones opposed to
bright skydome lighting.

Results in washed out, mixed color flat rendering.

29

Normal Mapped SH Lit Particles +
Extinction Transmittance Map for Sun [2]

© 2017 Activision Publishing, Inc.

SH deferred lightmap, used with normal mapped particles, correctly separates
lighting direction and colors adding a great sense of depth.
This is further improved by our Extinction Shadow Maps used for Sun only.

30

No Scattering

© 2017 Activision Publishing, Inc.

Blocky magnification artifacts can occur due to relative size differences between
particles on screen and lightmap texel size resulting in undersampling.

Lack of light multi-scattering (lightmap stores only primary scattering).

Both issues can be improved by lightmap scattering pass.

31

Scattering

© 2017 Activision Publishing, Inc.

Lightmap Lighting Scattering
Per each tile
CS scattering pass
Blur to simulate scattering
Inverse tonemapping for anti-aliasing
CS packed and sorted by tile sizes for highest occupancy

In addition (or instead of scattering) implement expensive cubic filtering during
particle rendering

Made per-particle rendering ~10% slower

Did not ship

32

Particle Lighting : Performance

* All processing utilizes Async Compute
* In most cases amortized over opaque geometry pass

RGB SH1 512 CS Job Time (ms) @PS4

Lighting 0.1-0.7
Scattering 0.1

infinity ward

st

¢~ Digital

Dragons

33

infinity ward

Multi-Res Rendering

34

Multi-Res Rendering

* Dense VFX results in heavy overdraw — need to optimize

* VFX team wanted to keep sorting ‘as is’
* Classic Low Res rendering requires merge pass injected during rendering
* Changes / Complicates sorting order
* MSAA based Multi Resolution Rendering pipeline
* Allows to keep rendering ‘as is’
* Individual Effects / Materials can be tagged for ‘Low Res Rendering’
* Console only for now (pending IHV support for MSAA extensions)

sl & Digital
infinity ward ’: ‘ D'r%'g% I

Initially developed for VFX rendering

35

Full Res : 5ms VFX

© 2017 Activision

36

Multi Res : 2.8 ms VEX

© 2017 Activision

37

Low Res : 2.4 ms VFX

© 2017 Activision

38

Multi-Res Algorithm

* Render to frame buffer aliased as 4xMSAA half resolution buffer
* Use pre-multiplied alpha rendering

* Decide per-draw which MSAA level to use
* 1sample => Half Resolution Rendering with Full Resolution depth Testing
* 4 samples => Full Resolution Rendering

* PS reads FMasks [3] to chose correct reconstruction method
* Read all subsamples
* Close to edge / multiple samples
* Bilinearly upsample Sample0
* No proximity of edges / multiple samples

* Compose with main buffer

sl & Digital
infinity ward ’: ‘ D'r%'g% I

GCN RT formats prevent direct aliasing. Therefore we need to actually re-write and
re-swizzle the depth buffer manually in CS.
This step is amortized with other depth related processing.

39

Color Buffer

© 2017 Activision Publishing, Inc.

40

© 2017 Activision Publishing, Inc.

Color Buffer FMask

Notice geometric edges marked with multipe samples

Gray -> 1 sample / Cmask touched for blending

Blue / Green /-> 2 / 3 samples passing rasterizer due to depth intersections

Red -> 4 samples due to full resolution rendering or depth intersection hitting all
subsamples

41

Alpha Buffer

© 2017 Activision Publishing, Inc.

42

© 2017 Activision Publishing, Inc

Alpha Buffer FMask

Notice geometric edges marked with multipe samples
Also difference between Color Fmask, due to possible different blend mode.

43

Dilated Combined Compacted FMask Buffer

Compacted FMASK
Fmask Color >0 || Fmask Alpha >0
Packed into 16 bit buffer — 16 bool values per pixel

© 2017 Activision Publishing, Inc.

44

MRTO Color
11_11_10F
+ FMask

Opaque Draws

MRT1 Alpha
R8 + FMask

[Compacted
Dilated Fmasks

infinily iara

FMask / CMask — can be different between color and alpha
Depends on blend mode setup and HW setup
Alpha blend
Add
Fast Blending mode (HW specific)

Resolved Textures
For Bilinear Sampling

o~
&

st

Digital
Dragons

45

Full Res Glass: 1.3ms

Full resolution transparencies can be very expensive i.e. player helmet, visors or
vehicle windshields.

46

Multi Res Glass: 0.4ms

Renderer allows mixed resolution of transparencies and regular meshes
Windshield for vehicles
Glass

Significant performance improvement (1.3ms -> 0.4ms).
Quality degradation — mostly visible on high frequency details such as
scratches on glass.

47

Multi-Res Issues

* Can result in ‘point sampled visuals’
* Low Res pixels are stored as single color sample
* Blending occurs in HW during rendering
* Blender duplicates lower samples if blending with higher ones is required

* Per-Pixel shading can introduce aliasing if executed only for sample0
» Z-Feather

* Use temporal dithering to mitigate issues
* Helps with color bit-depth issues

sl & Digital
infinity ward ’: ‘ D'r%'g% I

48

Low Res Effect Seen Through Low Res Glass Low Res Effect Seen Through High Res Glass

Fail case for a pixel:

Render Low res draw — writes sampleO (fire effect)

FMask set to 1 sample — can be still bilinearly upsampled

Render Blend High res draw — duplicates src sample0, blends per sample (glass in
front of fire effect)

FMask set to >1 sample — can not bilinearly upsample

49

Multi-Res Performance

* 3x — 3.8x performance scaling on materials tagged for Low Res

* Variance depends on
* Amount of render target micro tiles hit
* Overlap between full res and low res particles on screen

* 0.3ms — 0.4ms up-sample / resolve / reconstruct pass
* Variance comes from amount of micro tiles that need all subsamples

* Mileage may vary depending on GPU MSAA efficiency

g & Digital
infinity ward ’: ‘ D'r%'g% I

3x — 3.8x performance scaling on Materials tagged for Low Res
Variance depends on
Amount of render target micro tiles hit
Overlap between full res and low res particles on screen
Fast Blend / MSAA bandwidth benefits are lost as soon as MRT
micro tile gets tagged for decompress == Full Res Rendering
occurs
Always less pixel work
0.3ms — 0.4ms Upsample / Resolve / Reconstruct pass
Variance comes from amount of micro tiles that need all subsamples

All performance numbers are based off AMD GCN GPUs performance

50

Multi-Frequency Rendering: R&D

* Experiment with 8xMSAA
* Allow 1, 2, 4, 8 samples

* Change sample patterns in conjunction with temporal supersampling
* Temporal Stochastic MSAA based OIT
* Render opaque scene using MFR

* Pick objects of interest at high resolution i.e. character
* Randomly change sample counts on less important objects

infinity ward

¢~ Digital
‘<~ Dragons

51

infinity ward

Reflections & Refractions

52

© 2017 Activision Publishing, Inc.

K]

-

|

-

Reflection probes are a first class citizen.
Static and dynamic, applied in uniform way to all geometry through F+

53

© 2017 Activision Publishing, Inc.
DB:Streaming
. .__.3661, 160.0% replay time
Position (24326 45832 -568) ue
Angles (6 gue
3885794 system time
server tim

3661750 ime
Vel: 6.60 Vel3D: 6.60 FOV: 65.60

* Box Projected Reflection Probes
* Can be object space / world space
* Move and rotate with object —i.e. inside of a dropship
* Can be nested with different priorities
* Convolved with GPU GGX filter
* XYZ blend zones

* Stored as CubeArray of 64 x 12872 BC6 textures

Box Projected Reflection Probes
Can be object space / world space
Move and rotate with object —i.e. inside of a dropship
Can be nested with different priorities
Convolved with GPU GGX filter

54

ion Publishing, Inc.

Allows blending of arbitrary amount of probes per pixel
Support XYZ Blend regions defined per reflection probe volume

Screen shows overlapping reflection probes and their weights

55

© 2017 Activision Publishing, Inc.

Screen shows effective post-cull regions of cube map overlaps

56

Reflection Probes

* CS GPU Culling: Separating Axis Theorem
* Up to 64 cubemaps in view
* 32x24x48 x 64bits
* Per-pixel : additional culling steps inside PS

* Cost fully amortized on Async Compute pipeline

SAT Culling of 64 reflection probes
in avg. open scene
32x24x48

infinity ward

Digital

st

Dragons

57

Relightable Reflection Probes

* During bake - generate packed cube
map g-buffers
* Combined albedo + specular
* Depth
* Normal
* Emissive / Base ambient lighting

sl Iy & Digital
infinity ward ’: ‘ D'r%'g% I

)
d

infinity ward i Dlrolgons

Relightable Reflection Probes

* Each frame
* Pick N reflection probes that need relighting
* CS World Space Voxel Tree Lighting on each cube g-buffer

* CS Filter reflection probes [4]
* Calculates SH2 ambient light data

* CS compress copy to BC6h array of reflection cubemaps

* Used as normal reflection probe

59

One of our maps required dynamic permutations of arbitrary amount of dynamic
lights, including full blackout situation.

60

4
v
£ 4
.7
L7
¥
/
<
4

You can see how reflection probes react to sequential light changes to adjacent
rooms.

61

© 2017 Activision Publishing, Inc.

Notice the reflection of gun mounted light on the ceiling and in reflection probe.

62

© 2017 Activision Publishing, Inc.

When the character moves, you can see the reflection updated in real time.

63

© 2017 Activision Publishing, Inc.

64

Relightable Reflection Probes :

* Renderer updates 1 probe per frame

* All processing utilizes Async Compute

Compute Job on 128”2 Cubemap
Relighting (depends on # of dynamic lights)
Filtering all MIPs
BC6 compression all MIPs

infinity ward

Performance

Time (ms) @PS4
0.1-0.2
0.31
0.18

¢~ Digital

st

Dragons

65

Local directional normalization [5]

® O N ©o

. Probe . \‘
SH2

® ® O

&
N

localNormalization = Luma(GetSHLightgrid(worldPos, reflectionDir)); eval GI SH2 in refDir

probeNormalization = GetProbeNormalization(probeldx, sampleDir); // eval probe SH2 in sampleDir

normalizationFactor = localNormalization / probeNormalization;

result *= normalizationFactor; // match reflection with localized lighting data

..., . _

Local directional normalization by lightgrid SH

Each probe at generation time stores its own SH luma

Relightable probes calculate SH luma during filtering process

Lightgrid luma SH value is evaluated, during shading, in direction of specular
reflection from data already sampled for Gl.

Sampled Reflection probe data is scaled to match evaluated lightgrid value.

66

Prabes Only

© 2017 Activision Publishing, Inc.

Notice unevenly lit golden foil air ducts. Also consoles on right wall.

67

Probes + LG+ Normalization

© 2017 Activision Publishing, Inc.

With localized normalization, integration of scene is much improved.

68

60 FPS [1080]
4 server ms
2699.7 free ship (render)
GAMEBUDGET LARGE
137 replay time
(-770 ‘-’;70 28) corridor_ proto
el:

1 0.00 FOV: 65.00

© 2017 Activision Publishing, Inc.

Relightable reflection probes have additional benefits.
We already calculate SH2 ambient contribution for each probe, used for
normalziation.

* Relightable reflection probes have additional benefits

* Reuse SH2 ambient contribution used for normalization

* Can override light grid with dynamic ambient lighting SH2 data
* Coarse dynamic Gl

* Probes can be attached to moving object and affect environment
* Allows to use probes inside of moving vehicles with localized dynamic Gl

© 2017 Activision Publishing, Inc.

Coarse Dynamic Gl based off reflection probes
Add Delta Light SH2 from probes to ambient term (lightmap / lightgrid)

70

Waiting 8 Index ring buffer
Waiting ondndex ring buffer
Walting on Index ring buffer
Waiting on Index ring buffer
“‘V;Va'lting on Index ring buffer

© 2017 Activision Publishing, Inc.

Another view on coarse dynamic Gl

. Disabled.

59 FPS [1080]
4 server ms
2787.5 free ship (render)
GAMEBUDGET LARGE
137 replay time
(-978 343 70) corridor proto
Vel: 0.00 FOV: 65.00

|

|-
o~

—

-

¢

71

60 FPS
4
2787.5
GAMEBUDGET

(-978 343 70) cor
Vel: 0.00

Waiting on'lndex ring buffer

Waitmg on‘ndex ring buffer

Waiting on Index ring buffer
Waiting on Index ring buffer
«Watting on Index ring buffer

© 2017 Activision Publishing, Inc.

Another view on coarse dynamic GI. Enabled.

A N
Probe As‘sig\ent

Every single pixel samples at least one reflection probe

© 2017 Activision Publishing, Inc

73

15 !
—Il

tlmlzatlo /

u-:-uﬁ

w Eﬁg&i‘g éhf!""‘ 'ﬂ-‘h ::. h

v e T R
* Reflection probe LOD opt|m|zat|on for low gloss surfaces
* At certain threshold skip reflection probe lookup (<0.1 roughness)
* Derive specular from lightgrid data (evalSH(reflectionDir))
* Blend with reflection probe in transition threshold
* ~0.5ms average savings

© 2017 Activision Publishing, Inc.

Reflection probe LOD optimization for low gloss surfaces
At certain threshold skip reflection probe lookup
Derive specular from lightgrid data
~0.5ms saving in average scene (filtering low mips of cubemaps is really
expensive with cube wrap filtering mode — you want to avoid it at all cost)

Screen represent a scene that has majority of metal materials of varying
roughness.

Screen Space Reflections / Refractions

* Generate Scene Mip chain prior to tone map resolve
* Use BRDF screen space filter to match mips to gloss BRDF similar to cubemaps
* Reproject previous frame mip chain

* Reflections
* Reuse intersection from Box Projection Reflection Probes
* No additional tracing needed
* Pick mip based on material gloss and ray length
* Reflection as good as your Box Projection match

sl & Digital
infinity ward ’: ‘ D'r%'g% I

75

© 2017 Activision Publishing, Inc.

Mix of all presented techniques working together.
Box projected reflection probes

Relightable reflection probes

Box projected screen space reflections

76

© 2017 Activision Publishing, Inc.

Mix of all presented techniques working together.
Box projected reflection probes

Relightable reflection probes

Box projected screen space reflections

77

* Refraction
* Sample depth pyramid
* Pick mip based on surface roughness
* Use jittered / dithered sampling to hide undersampling
* Project the ray in 2D by ray length to depth hit point
* Pick Scene Mip based on ray length'and material gloss
* 2 Refraction resolves :

* viewmodel opaque, scene opaque

78

134

<
J
<
x
x
<
m

© 2017 Activision Publishing, Inc.

Used for multiple surfaces ranging from frosted glass to plastic curtains

79

© 2017 Activision Publishing, Inc.

sl & Digital
infinity ward o D-rg(,;gc;ns

Our weapon artists and users love to see how internal weapon parts operate, seen
through semi-translucent pieces using screen space glossy refractions

80

© 2017 Activision Publishing, Inc.

8 - #° Digital
infinity ward ; D',gg,';c:,ns

Our weapon artists and users love to see how internal weapon parts operate, seen
through semi-translucent pieces using screen space glossy refractions

81

© 2017 Activision Publishing, Inc.

g & Digital
infinity ward ’: ‘ D'r%'g% I

Our weapon artists and users love to see how internal weapon parts operate, seen
through semi-translucent pieces using screen space glossy refractions

82

Screen Space Ref/Raf : Performance

Shader | Time (ms) @PS4 @ 1080p |
Scene mip generation 0.25
Full screen SS Reflection surface +0.3
Full screen SS Refraction surface +0.5

" g ¥ Diaital
infinity ward C D:rgé:g%ns

st

Very cheap in comparison with fully traced methods

CALI'DUTY

INFINITE WARFARE

&'7-‘ [
/ %

\olumetric Réhderer

Volumetrics were important part of COD:IW look. Could not ship without them, nor
use them as quality setting.

84

— W W

\Sase Scene

© 2017 Activision Publishing, Inc.

Volumetrics use Froxel buffer [6][7]

85

‘Ambient Lightgrid + Volumetrics

-| Mk

v

ik l‘ I
o T : =
-—;

© 2017 Activision Publishing, Inc.

Static lighting and Gl resamples the lightgrid.

86

< =] !
‘?rimary Lights + Ambient Lightgrid + Volumetrics ‘

© 2017 Activision Publishing, Inc.

Supports all light types
Static / Ambient Light
samples light grid
Dynamic Lights
evaluates using unified code path for scene rendering

Temporal Re-projection to stabilize
2 x memory & bandwidth consumption

87

E—

Density Volumes with High Irradiance

© 2017 Activision Publishing, Inc.

Artists can manually place localized density (fog) volumes.
Each density volume

World Space Bounding Box

Base density

Irradiance

Screenshot shows Rendering of high irradiance density volumes

88

DensityV6|umes andssunfinteraction

.eN- - —

© 2017 Activision Publishing, Inc.

Used to ‘localize’ fog in map
Often placed in interiors, without affecting global fog settings

Screenshot shows Sunlit density volumes of varying densities

89

© 2017 Activision Publishing, Inc.

Density can be masked by up to 4 axis aligned projected textures
Animated UV scrolling (i.e. animated knee height fog)

Screenshot shows Multiple textures used to create different density volumes

90

Clustered Density Volumes

© 2017 Activision Publishing, Inc.

CS job for clustering
Clusters to match 4x4x4 main CS kernel
Up to 256 bits indexing density volumes within the frustum

Screenshot shows Clustered view of density volumes

91

Volumetrics Only

© 2017 Activision Publishing, Inc.

Low Frequency visuals provided by Volumetric Rendering

92

Particles Only

© 2017 Activision Publishing, Inc.

High Frequency visuals provided by Lit Particles

93

Combined

© 2017 Activision Publishing, Inc.

Blending is seamless due to 3D nature of volumetrics.
Opaque / Transparent just sample 3D texture with integrated in-scatter light and
integrated extinction.

94

Initial Implementation

Density Density Buffer

Injection
CS 4x4x4 Extinction
Buffer

Culled Density
‘Volume Buffer

Integrated
Lighting Extinction
Pass
CS 4x4x4

Integral
Pass
CS 8x8x1

S & Digital
infinity ward o D-rgggc;ns

Multiple sequential CS jobs
Density Injection
CS optimized for scalarization : execute in 4x4x4 thread kernels
match single froxel size from clustered density volume buffer
Write (Density Buffer)
Lighting Pass
CS optimized for scalarization : (4x4x4 thread kernel)
match single froxel size from clustered light buffer

Read (Density Buffer) / Write (In-scatter Buffer / Extinction Buffer)
Integral Pass

Iterate over Z slices (8x8x1 thread kernel)

Accumulate scattering and extinction

Read (In-scatter Buffer / Extinction Buffer) / Write (Integrated In-
scatter / Integrated Extinction Buffer)

Volumetric Renderer : Initial Implementation

* 112x90x128
* 11 11 10F—(5,150KB) | in-scatter and integral buffer
* 16F—(2,580KB) | density and extinction buffer

* Each pass shown to be BW / Latency limited

Density Injection 5,150 KB ~0.4 ms 36
Lighting Pass 10,310 KB ~1.1ms 48
Integral Pass 15,460 KB ~0.5 ms 42

~2.0 ms
Total 30,920 KB MAX(48
e (ALU only performance ~1.2 ms)) (48]

sl & Diaital
infinity ward y: ‘ D:'gg;% i

Each pass shown to be BW / Latency limited
3D texture R/W has high latency
Pick tile mode to match your CS job R/W pattern (kernel size)
TILE_MODE_1D_THIN -> Slice by slice R/W (8x8x1)
TILE_MODE_1D_THICK -> 3D block R/W (4x4x4)

B/W bound
Run wider VGPR
Already high occupancy
Latency bound
Compensate with more ALU
Remove redundant memory transfer
Experiment
Cap all passes to 48 VGPR
Performance unchanged
Still latency bound
Forcing to 64 VPGR (4 occupancy) results in 20% performance loss due to B/W
We are at optimal occupancy

Optimized Implementation

Integrated
Extinction

Merged
Buffer

Passes
CS 4x4x4

infinity ward

Merge all passes
Each pass exists as ‘code block’
Known VGPR pressure and cycles
All input memory read bandwidth optimized
Only Write out
In-scattering Integral
Extinction Integral
Need to match kernel size for scalarization
Switch all blocks to work with 4x4x4 3D clusters
TILE_MODE_1D_THICK
In cache, grouped texture Loads and Stores
Integral CS required new algorithm to work in 4x4x4 groups
Inclusive Prefix Sum
Implemented using Lane Swizzles

ro
&

st

Digital
Dragons

97

// 4x4x4 Integral (Z X Y - order)
// 8x8x1 Integral (XY Z - order) float accumulate = 9;
float accumulate = ©; uint lane = __XB_GetLaneID();
for(I = ©; I < sliceCount; i++) bool laneMask® = (lane >> ©) & 1;
{ bool laneMaskl = (lane >> 1) & 1;
accumulate += ReadData(xy, i); for(I = ©; I < sliceCount / 4; i++)
{
data = ReadData(xy, i);
// Inclusive prefix-sum
sumData = data;
// Threads: 4th = 4th 4 3rd 2nd = jst 4 pnd
addData® = QuadSwizzle(sumData, ©, @, 2, 2);
sumData += laneMask® ? addData@ : ©.ef;
// Threads: 4th= 4th 4 2nd = 3rd 4 gth 4 st 4 2nd

addDatal = QuadSwizzle(sumData, ©, ©, 1, 1);
sumData += laneMaskl ? addDatal : ©.ef;

accumulate += sumData ;
// Broadcast 4t" thread to 1st 2nd 3rd

accumualte = GetLastLane(accumulate);

// GetLastLane & QuadSwizzle are LaneSwizzle macros
QuadSwizzle(v, n@, nl, n2, n3) - for every 1st 2nd 3rd gnd 4th
lane of register V, swizzle so 15t swizzles to n@, 2" swizzles
to n1, 3™ swizzles to n2 and 4t swizzles to n3 (where no..3
in [0..3]) 1lane.

GetLastZLane(v) - returns last lane in each kernel (in this
case 4th)

#define LANE_SWIZZLE_MASK(_and, or, xor) ((_and&O0x1F)<<0) | ((or&
Ox1F)<< 5) | ((_xor & Ox1F)<< 10)

#define _ QUAD_SWIZZLE_MASK(00, o1, 02, 03)((o0 &0x3)<<0)|((o1
&0x3)<<2)|((02 &0x3)<<4)|((03&0x3)<<6)]|(0x1<<15)

#define LaneSwizzle(x, and, or, xor)__LaneSwizzle(x, LANE_SWIZZLE_MASK(
_and, or, _xor))

#define QuadSwizzle(_x, 00, o1, 02, o03)__LaneSwizzle(x,
__QUAD_SWIZZLE_ MASK(00, 01, 02, 03))

Some shader compilers provide QuadSwizzle functionality right away.

98

Volumetric Renderer : Final Implementation

» Significant optimization allowed this technique to be viable

Mixed

Multiple Passes 30,920 KB ~2.0ms 100% MAX(48)

Merged 7,730 KB 1.2 ms 60% 48 Ax4x4

A . & Digital
infinity ward 4: ‘ D:'ggg% i

PP, -

\
\

N,

* Cascade support
* ZSlices divided into 32 slices deep cascades
* Each cascade maps to linear range thatcan be reconfigured at runtime

» Shader permutation support

© 2017 Activision Publishing, Inc.

View distances were an issue. Our view ranges can dynamically scale between close
guarter corridors, open vistas and space battles.

Reconfiguration of slices can happen at runtime and helps with transitions i.e. inside
of a building to outside.

Volumetrics can pick a different optimized shader that can sample : sun only, lights
only, ambient only, or any permutation. This gave us up to 20% performance boost in
certain situations.

100

Texture Packer

infinity ward

101

Texture Packer : Motivation

* Disk and runtime memory limits
* Do not want to complicate asset pipeline for artists

* Multiple texture samples unfavorable for
* Anisotropic Filtering
* Forward+

* Augmented textures
* Antialiasing

g & Digital
infinity ward ’: ‘ D'r%'g% I

102

Core Texture Slots

Semantic Slot Compression type | Bytes per pixel
Diffuse (RGB) + Alpha (A) BC1/BC3 05/10
Specular (RGB) + Gloss (A) BC3 1.0
Normal (XY) BCS 1.0
Occlusion (A) BC4 0.5
Reveal (A) <BSP only> BC4 0.5
Total : 4 - 5 texture samples 40-45

sl & Diaital
infinity ward ,1: ‘ D:'gg;% i

103

Additional Texture Slots

Semantic Slot Compression type Bytes per pixel
Thickness BC4 0.5
Absorption BC1 0.5
Fluorescence BC1 0.5
Sheen and Cloth BC1 0.5
Anisotropy BC7 1.0
Reveal BC4 0.5
Thickness BC4 0.5

sl & Diaital
infinity ward ,1: ‘ D:'gg;% i

104

Converter

* Packs textures according to rule sets

* Converts between representation
* Specular Color Model to Metalness Model

* Picks best data compression scheme
* Calculates statistical moments
* Calculate different error metrics

* Picks best texture compression format

g & Digital
infinity ward ’: ‘ D'r%'g% I

Packs textures according to rule sets
Converts between representation
Specular Color Model -> Metalness Model
Picks best data compression scheme
i.e. normal map packing
Calculates statistical moments (1st, 2nd moments over X and Y)
Augments gloss maps for BRDF anti-aliasing [8]
Similar to CLEAN / Toksvig mapping [9]
Supports X/Y gloss maps for anisotropic materials [10]
Calculate different error metrics
Use error metric to pick best compression schemes matching data
Pick metric relevant to data — i.e. normal deviation for normal maps
instead of color delta
Picks best texture compression format
BC4 /BC1/BC7

105

Diffuse

© 2017 Activision Publishing, Inc.

Specular Model-> Metalness Converter
Fitted ranged curves to convert between Specular and Metalness model

106

|

i

. | Specular

U
© 2017 Activision Publishing, Inc.

Preserves dielectric / insulator range
No need for separate reflectivity / FO

107

Fused Diffuse Specular

o g

© 2017 Activision Publishing, Inc.

108

Metalness

ctivision shing, Inc.

Makes assumptions about Insulator Range
0.0-0.1 insulators => monochromatic specular
>0.1 dielectrics => color specular
Decompression in shader is only 5ALU

109

#define INSULATOR_SPEC_RANGE @.1f

void DeriveMetalnessAndFusedAlbedoSpecMap(float3 albedo, float3 specular,

float nonmetal

float metal

nonmetal

float specE
float specI
metalness
fusedAlbedoSpec

metalness

intinity ward

Bonus Code Slide

out float3 fusedAlbedoSpec, out float metalness)

(1.ef / 3.ef) * (albedo.r + albedo.g + albedo.b);
(1.ef / 3.8f) * (specular.r + specular.g + specular.b);

saturate(nonmetal + DATA_FORMAT_FP16_MIN_FLT);
saturate(metal - INSULATOR_SPEC_RANGE);

min(metal, INSULATOR_SPEC_RANGE);

specE / (specE + nonmetal);

(saturate(specular - INSULATOR_SPEC_RANGE)) + albedo;

specI + (1.@f - INSULATOR_SPEC_RANGE) * metalness;

-

al
3
Dragons

110

void DeriveAlbedoAndSpec(float3 fusedAlbedoSpec, float metalness,
out float3 albedo, out float3 specular)

saturate(metalness - INSULATOR_SPEC_RANGE);
m m* (1.6f / (1.0f - INSULATOR_SPEC_RANGE));

float ro min(metalness, INSULATOR_SPEC_RANGE);

albedo saturate(1.0f - m) * fusedAlbedoSpec;
specular re + m * (fusedAlbedoSpec);

- |
intinity wara R DiSiaons

it

Bonus Code Slide

111

Data Analysis & Nomal Maps

* Hemi-Octahedron Normal Map compression [11]

* Data analysis
* Use quadratic scaling for “almost flat” normal maps

* Normal vector scaling values determined by data pipeline
* Rescaled in shader

// x in [-1, 1] // x in [-1, 1]
float EncodeSNormQuadraticScaling(float x) float DecodeSNormQuadraticScaling(float x)
{ {

float sqrtX = sqrt(abs(x)); float x2 = x * x;

return x > 0.8f ? sqrtX : -sqrtX; return x > 0.0f ? x2 : -x2;

}

- al
innmiy wara . Dragons

Quadratic scaling around 0.0
Adds more precision to ‘flat normals’

112

Quadratic Hemi-Octahedron Z reconstruction

M\

| & 3 ,
o | °
—— [' \
\ -
© 2017 Activision Publishing, Inc. -

113

Texture Packer

Primary set Secondary set Tertiary set
(packed_CS) (packed_NOG) (packed_ART)

R | Fused Diffuse & Specular color | Gloss - fused with Variance Alpha
*(generated by converter)

Metalness mask Normal'Y:
(generated by converter)

A . & Digital
infinity ward D-rgg;c;ns

114

Packed Texture Sets

Final Converted Texture Compression type Bytes per pixel
(&) BC7 1.0
NOG BC7 1.0
A /R /T <optional> BC4 /BC1 /BC7 0.0-1.0
Total : 2 - 3 texture samples 2.0-3.0

Semantic Slot Compression type Bytes per pixel
Total : 4 - 5 texture samples BC1 -BCS 40-45

Texture sample savings Memory savings
50% - 40% 50% - 33%

sl ¥ Diaital
infinity ward y: 4 D:'gg;% i

115

Real world results

* Model textures saved ~30% memory

* BSP (static map geo / terrain) saved ~15-20% memory
* Shader performance improvement ~5%

* Ammortized level of anisotropic filtering 4xAF

* Example map savings:
* PHStreets: 11Gb -> 9Gb =~19%
* Metropolis : 5Gb -> 4 Gb =~20%

g & Digital
infinity ward ’: ‘ D'r%'g% I

Real world results differ a bit from theoretical data.
In certain cases we couldn’t use packing due to mismatched texture resolutions
provided by art, thus ambiguity in packing rules.

116

Rendering presentations 2017

* EGSR

* Ambient Dice Michal Iwanicki
* Siggraph

* Indirect Lighting in COD: Infinite Warfare Michal Iwanicki

* Dynamic Temporal Supersampling and Anti-Aliasing Jorge Jimenez

* Improved Culling for Tiled and Clustered Rendering Michal Drobot

* Practical Multilayered PBR rendering Michal Drobot
* Microsoft XFest 2017

* Optimizing the Renderer of Call of Duty: Infinite Warfare Michal Drobot

research.activision.com

117

CALIDUTY

INFINITE WARFARE

A
www.activisionblizzard.com/careers

-

118

NEEIRLERLS

* ESM Shadow Map Cache : * Volumetric Renderer
* Felipe Gomez * Wade Brainerd, Felipe Gomez

* Reflections / Refractions * Particle Lighting

* Paul Malin * Charlie Birtwistle
* Lightgrid / Gl * D+ Renderer

* Michal Iwanicki, Peter Pike Sloan * Michael Vance
* Voxel Tree * Texture Packing

* Peter Pon * Ryan Sammartino

* Tessellation * Various
* Paul Edelstein * Angelo Pesce, Akimitsu Hogge

infinity ward & gigital
~~ Dragons

119

Additional Thanks

* W Rendering Team

* Anthony Carotenuto, Rulon Raymond, Peter Pon, Mike Esposito, Vishal
Kashyap, Felipe Gomez

* Activision Central Tech
* Infinity Ward
* Sledgehammer Games
* Treyarch

* Raven

infinity ward

4 Digital

st

Dragons

120

research.activision.com

-

Q&A

-

A
michal@infinityward.com
W @MichalDrobot

121

References

[0] “The Devil is in the details : idTech 666", Tiago Sousa, Siggraph 2016

[1] “Secrets of CryENGINE 3 Graphics Technology”, Tiago Sousa, Siggraph 2011

[2] “Extinction Transmittance Maps”, P.Gautron & C.Delandre & J-E Marvie, 2011

[3] “Hybrid Reconstruction Antialiasing”, Michal Drobot, GPU PRO 6

[4] “Fast Filtering of Reflection Probes”, Josiah Manson and Peter-Pike Sloan, EGSR 2016
[5] “Getting More Physical in Call of Duty: Black Ops 1I”, Dimitar Lazarov, Siggraph 2013

[6] “Physically-based & Unified Volumetric Rendering in Frostbite”, Sebastien Hillaire,
Siggraph 2015

[7] “Volumetric fog: Unified, compute shader based solution to atmospheric scattering”,
Bart Wronski, Siggraph 2014

[8] “Lean Mapping”, Marc Olano and Dan Baker
[9] “Specular Showdown in the Wild West”, Stephen Hill,
[10] “Advanced VR Rendering”, Alex Vlachos, GDC 2014

[11] “A Survey of Efficient Representations for Independent Unit Vectors”, Cigolle et al.,
Journal of Computer Graphics Techniques Vol. 3, No. 2, 2014

sl & Digital
infinity ward ’: ‘ D'r%'g% I

122

Bonus Slides

infinity ward

123

© 2017 Activision Publishing. §

o

59 FPS [16:

Directional SH Occlusion Lightmap

* Directional SH1 occlusion lightmaps

* High memory cost
* Need additional 4 channels
* 2xBC5 (\Quality) or 1xBC7 (Performance & Memory)

* Each ‘cone’ represents a bent cone calculated out of stored SH1 coefficients

* NOT shipped — but ready for future work

124

ERS [11080]]
128 server.ims

PrObeS Only 1090.5]f;;s* xb3 ‘render

xb3 perm

10746
GAMEBUDGET LARGE .
308, 54.1% replay time
(-692 453 28) corridor proto
0.00 Vel3D: 0.60 FOV: 65.00

© 2017 Activision Publishing, Inc.

Notice crate on the right lacking reflection shadowing.

125

< > - P . I38serverims S |
Probes + Directional SH Occlusion Lightmap ool o pofrender
1 GAMEBUDGET LARGE
327 .3% replay time
(-692 453 28) (0111(]01 proto
0.00 Vel3D: ©0.00 FOV: 65.00

k]
\', verd EPS [10680]]

© 2017 Activision Publishing, Inc.

Notice significantly improved localized shadowing near room corners.

126

// Pack into hemisphere octahedron © 2017 Activision Publishing, Inc.

// Assume normalized input on +Z hemisphere. Output [-1, 1].

void EncodeHemiOctaNormal(const float3 v, inout float2 encV)

{

// Project the hemisphere onto the hemi-octahedron, and then into the xy plane

float rcp_denom = 1.ef / (abs(v[@]) + abs(v[1]) + v[2]);
float tx = v[8] * rcp_denom;

float ty = v[1] * rcp_denom;

encV[e] = tx + ty;

encV[1l] = tx - ty;

void DecodeHemiOctaNormal(const float2 encV, inout float3 v)
{
Rotate and scale the unit square back to the center diamond
(encv[e] + encV[1]) * @.5f;
(encv[e] - encVv[1]) * @.5f;
1.0f - abs(v[e]) - abs(v[1]);

Bonus Code Slide

127

