
1

This talk will present high level overview of some core rendering components of COD
: Infinite Warfare

2

COD : IW is the latest installment of Call of Duty franchise.
From rendering perspective it was a huge challenge.

3

4

5

Used for out of frustum 3D lookups for : lights in dynamic reflection probes, lights for
dynamic lightmapped particles, tetrahedron Global Illumination lightgrid

6

Colors represent amount of lights hitting each pixel. Each voxel stores preculled lights.
It is shown here to demonstrate how world space voxels are visualized on surfaces (
not used for actual scene lighting).

7

8

9

10

11

Smodels / Xmodels
Static Models / Dynamic Models
Similar to standard game engine meshes
Used for props, characters, vehicles, weapons etc.

12

BSP
Radiant brush based geometry
Blocking out levels
Terrain
Static Structural parts of environments
Multiple brushes with individual materials get merged together into optimized
sub-meshes and sub-shaders.
Allows unique detailing of the world at high performance
Support Tessellation & Displacement mapping

13

Wireframe of base BSP

Good candidate for physics / AI raycasts. Simple geo, easy to iterate on.

14

Base BSP with enabled Adaptive Tessellation and Displacement Mapping.
Adaptively tessellate based on displacement deltas, distance to camera, patch angle
to camera.
Each generated sub-patch goes through GPU frustum, occlusion and backface culling.

15

16

T&D makes a huge visual impact at moderate adaptive performance hit.
Here exaggerated for visual presentation.

17

18

19

20

Caching algorithm:
Request SMs per view

> get all shadow maps visible in view that passed culling tests
Check Stale Cache for SMs that DO NOT need update

> Is the light resident in Stale Cache?
> Did the light move in last frame?
> Did anything move within light frustum in last frame?
> Was an update forced?

Pick 4-8 most important SMs
> Sort by priority

> Artist driven priority (player flashlight etc.)
> Distance, projected size, intensity

For each picked light
Check Static Cache for SM – static cache hold actual D16 shadow maps that contain
only static geometry.

> Light is cached in Static Cache
> Copy Static SM from Static Cache to Active

> Light is NOT cached in Static Cache
> Render static geometry to Active Cache
> Copy static geo Shadow Map to Static Cache

Render dynamic geo to Active SM – Active Cache has 4 – 8 D16 shadows maps.
Technically we only need 1, however we overlap multiple async compute jobs from

21

shadow cache system, over rendering of actual shadow maps (i.e. copies, ESM
filtering, downsampling, shadow map clears). So CS jobs for shadow map 0 would be
overlapped with rendering of shadow map 1.
Copy and ESM process Active SM to Stale Cache

21

22

Need high quality shadows
Cinematic characters
View model

Need multiple high resolution object space shadow maps
Too much pressure on standard Shadow Map Cache

High number of active slots needed

23

Screen Space Shadow
Do a depth buffer raytrace in direction of the light source

Deferred pass for Sun Only
Optimized for view model (depth bounds / stencil test)
Works well if run on whole scene

24

Integrated into F+
Store strongest light source per-pixel

Set by artists as key light or derived from runtime computation as max(
intensity0…)

Perform a single trace in key light direction

25

26

27

28

Simple Lit particles with omni-directional lighting.
Complex lighting scenario. Strong direction sun lights with color tones opposed to
bright skydome lighting.
Results in washed out, mixed color flat rendering.

29

SH deferred lightmap, used with normal mapped particles, correctly separates
lighting direction and colors adding a great sense of depth.
This is further improved by our Extinction Shadow Maps used for Sun only.

30

Blocky magnification artifacts can occur due to relative size differences between
particles on screen and lightmap texel size resulting in undersampling.
Lack of light multi-scattering (lightmap stores only primary scattering).
Both issues can be improved by lightmap scattering pass.

31

Lightmap Lighting Scattering
Per each tile

CS scattering pass
Blur to simulate scattering
Inverse tonemapping for anti-aliasing

CS packed and sorted by tile sizes for highest occupancy

In addition (or instead of scattering) implement expensive cubic filtering during
particle rendering

Made per-particle rendering ~10% slower
Did not ship

32

33

34

Initially developed for VFX rendering

35

36

37

38

GCN RT formats prevent direct aliasing. Therefore we need to actually re-write and
re-swizzle the depth buffer manually in CS.
This step is amortized with other depth related processing.

39

40

Notice geometric edges marked with multipe samples
Gray -> 1 sample / Cmask touched for blending
Blue / Green /-> 2 / 3 samples passing rasterizer due to depth intersections
Red -> 4 samples due to full resolution rendering or depth intersection hitting all
subsamples

41

42

Notice geometric edges marked with multipe samples
Also difference between Color Fmask, due to possible different blend mode.

43

Compacted FMASK
Fmask Color > 0 || Fmask Alpha > 0
Packed into 16 bit buffer – 16 bool values per pixel

44

FMask / CMask – can be different between color and alpha
Depends on blend mode setup and HW setup

Alpha blend
Add
Fast Blending mode (HW specific)

45

Full resolution transparencies can be very expensive i.e. player helmet, visors or
vehicle windshields.

46

Renderer allows mixed resolution of transparencies and regular meshes
Windshield for vehicles
Glass

Significant performance improvement (1.3ms -> 0.4ms).
Quality degradation – mostly visible on high frequency details such as
scratches on glass.

47

48

Fail case for a pixel:
Render Low res draw – writes sample0 (fire effect)
FMask set to 1 sample – can be still bilinearly upsampled
Render Blend High res draw – duplicates src sample0, blends per sample (glass in
front of fire effect)
FMask set to >1 sample – can not bilinearly upsample

49

3x – 3.8x performance scaling on Materials tagged for Low Res
Variance depends on

Amount of render target micro tiles hit
Overlap between full res and low res particles on screen

Fast Blend / MSAA bandwidth benefits are lost as soon as MRT
micro tile gets tagged for decompress == Full Res Rendering
occurs

Always less pixel work
0.3ms – 0.4ms Upsample / Resolve / Reconstruct pass

Variance comes from amount of micro tiles that need all subsamples

All performance numbers are based off AMD GCN GPUs performance

50

51

52

Reflection probes are a first class citizen.
Static and dynamic, applied in uniform way to all geometry through F+

53

Box Projected Reflection Probes
Can be object space / world space

Move and rotate with object – i.e. inside of a dropship
Can be nested with different priorities
Convolved with GPU GGX filter

54

Allows blending of arbitrary amount of probes per pixel
Support XYZ Blend regions defined per reflection probe volume

Screen shows overlapping reflection probes and their weights

55

Screen shows effective post-cull regions of cube map overlaps

56

57

58

59

One of our maps required dynamic permutations of arbitrary amount of dynamic
lights, including full blackout situation.

60

You can see how reflection probes react to sequential light changes to adjacent
rooms.

61

Notice the reflection of gun mounted light on the ceiling and in reflection probe.

62

When the character moves, you can see the reflection updated in real time.

63

64

65

Local directional normalization by lightgrid SH
Each probe at generation time stores its own SH luma
Relightable probes calculate SH luma during filtering process
Lightgrid luma SH value is evaluated, during shading, in direction of specular
reflection from data already sampled for GI.
Sampled Reflection probe data is scaled to match evaluated lightgrid value.

66

Notice unevenly lit golden foil air ducts. Also consoles on right wall.

67

With localized normalization, integration of scene is much improved.

68

Relightable reflection probes have additional benefits.
We already calculate SH2 ambient contribution for each probe, used for
normalziation.

69

Coarse Dynamic GI based off reflection probes
Add Delta Light SH2 from probes to ambient term (lightmap / lightgrid)

70

Another view on coarse dynamic GI. Disabled.

71

Another view on coarse dynamic GI. Enabled.

72

Every single pixel samples at least one reflection probe

73

Reflection probe LOD optimization for low gloss surfaces
At certain threshold skip reflection probe lookup
Derive specular from lightgrid data
~0.5ms saving in average scene (filtering low mips of cubemaps is really
expensive with cube wrap filtering mode – you want to avoid it at all cost)

Screen represent a scene that has majority of metal materials of varying
roughness.

74

75

Mix of all presented techniques working together.
Box projected reflection probes
Relightable reflection probes
Box projected screen space reflections

76

Mix of all presented techniques working together.
Box projected reflection probes
Relightable reflection probes
Box projected screen space reflections

77

78

Used for multiple surfaces ranging from frosted glass to plastic curtains

79

Our weapon artists and users love to see how internal weapon parts operate, seen
through semi-translucent pieces using screen space glossy refractions

80

Our weapon artists and users love to see how internal weapon parts operate, seen
through semi-translucent pieces using screen space glossy refractions

81

Our weapon artists and users love to see how internal weapon parts operate, seen
through semi-translucent pieces using screen space glossy refractions

82

Very cheap in comparison with fully traced methods

83

Volumetrics were important part of COD:IW look. Could not ship without them, nor
use them as quality setting.

84

Volumetrics use Froxel buffer [6][7]

85

Static lighting and GI resamples the lightgrid.

86

Supports all light types
Static / Ambient Light

samples light grid
Dynamic Lights

evaluates using unified code path for scene rendering

Temporal Re-projection to stabilize
2 x memory & bandwidth consumption

87

Artists can manually place localized density (fog) volumes.
Each density volume

World Space Bounding Box
Base density
Irradiance

Screenshot shows Rendering of high irradiance density volumes

88

Used to ‘localize’ fog in map
Often placed in interiors, without affecting global fog settings

Screenshot shows Sunlit density volumes of varying densities

89

Density can be masked by up to 4 axis aligned projected textures
Animated UV scrolling (i.e. animated knee height fog)

Screenshot shows Multiple textures used to create different density volumes

90

CS job for clustering
Clusters to match 4x4x4 main CS kernel
Up to 256 bits indexing density volumes within the frustum

Screenshot shows Clustered view of density volumes

91

Low Frequency visuals provided by Volumetric Rendering

92

High Frequency visuals provided by Lit Particles

93

Blending is seamless due to 3D nature of volumetrics.
Opaque / Transparent just sample 3D texture with integrated in-scatter light and
integrated extinction.

94

Multiple sequential CS jobs
Density Injection

CS optimized for scalarization : execute in 4x4x4 thread kernels
match single froxel size from clustered density volume buffer

Write (Density Buffer)
Lighting Pass

CS optimized for scalarization : (4x4x4 thread kernel)
match single froxel size from clustered light buffer

Read (Density Buffer) / Write (In-scatter Buffer / Extinction Buffer)
Integral Pass

Iterate over Z slices (8x8x1 thread kernel)
Accumulate scattering and extinction
Read (In-scatter Buffer / Extinction Buffer) / Write (Integrated In-
scatter / Integrated Extinction Buffer)

95

Each pass shown to be BW / Latency limited
3D texture R/W has high latency
Pick tile mode to match your CS job R/W pattern (kernel size)

TILE_MODE_1D_THIN -> Slice by slice R/W (8x8x1)
TILE_MODE_1D_THICK -> 3D block R/W (4x4x4)

B/W bound
Run wider VGPR

Already high occupancy
Latency bound

Compensate with more ALU
Remove redundant memory transfer

Experiment
Cap all passes to 48 VGPR

Performance unchanged
Still latency bound

Forcing to 64 VPGR (4 occupancy) results in 20% performance loss due to B/W
We are at optimal occupancy

96

Merge all passes
Each pass exists as ‘code block’

Known VGPR pressure and cycles
All input memory read bandwidth optimized
Only Write out

In-scattering Integral
Extinction Integral

Need to match kernel size for scalarization
Switch all blocks to work with 4x4x4 3D clusters

TILE_MODE_1D_THICK
In cache, grouped texture Loads and Stores

Integral CS required new algorithm to work in 4x4x4 groups
Inclusive Prefix Sum
Implemented using Lane Swizzles

97

// GetLastLane & QuadSwizzle are LaneSwizzle macros
QuadSwizzle(v, n0, n1, n2, n3) – for every 1st 2nd 3rd and 4th

lane of register V, swizzle so 1st swizzles to n0, 2nd swizzles
to n1, 3rd swizzles to n2 and 4th swizzles to n3 (where n0..3
in [0..3]) lane.
GetLastZLane(v) – returns last lane in each kernel (in this
case 4th)

#define __LANE_SWIZZLE_MASK(_and, _or, _xor) ((_and & 0x1F) << 0) | ((_or &
0x1F) << 5) | ((_xor & 0x1F) << 10)
#define __QUAD_SWIZZLE_MASK(_o0, _o1, _o2, _o3) ((_o0 & 0x3) << 0) | ((_o1
& 0x3) << 2) | ((_o2 & 0x3) << 4) | ((_o3 & 0x3) << 6) | (0x1 << 15)

#define LaneSwizzle(_x, _and, _or, _xor)__LaneSwizzle(_x, __LANE_SWIZZLE_MASK(
_and, _or, _xor))
#define QuadSwizzle(_x, _o0, _o1, _o2, _o3)__LaneSwizzle(_x,
__QUAD_SWIZZLE_MASK(_o0, _o1, _o2, _o3))

Some shader compilers provide QuadSwizzle functionality right away.

98

99

View distances were an issue. Our view ranges can dynamically scale between close
quarter corridors, open vistas and space battles.
Reconfiguration of slices can happen at runtime and helps with transitions i.e. inside
of a building to outside.
Volumetrics can pick a different optimized shader that can sample : sun only, lights
only, ambient only, or any permutation. This gave us up to 20% performance boost in
certain situations.

100

101

102

103

104

Packs textures according to rule sets
Converts between representation

Specular Color Model -> Metalness Model
Picks best data compression scheme

i.e. normal map packing
Calculates statistical moments (1st , 2nd moments over X and Y)

Augments gloss maps for BRDF anti-aliasing [8]
Similar to CLEAN / Toksvig mapping [9]
Supports X/Y gloss maps for anisotropic materials [10]

Calculate different error metrics
Use error metric to pick best compression schemes matching data
Pick metric relevant to data – i.e. normal deviation for normal maps

instead of color delta
Picks best texture compression format

BC4 / BC1 / BC7

105

Specular Model-> Metalness Converter
Fitted ranged curves to convert between Specular and Metalness model

106

Preserves dielectric / insulator range
No need for separate reflectivity / F0

107

108

Makes assumptions about Insulator Range
0.0-0.1 insulators => monochromatic specular
>0.1 dielectrics => color specular

Decompression in shader is only 5ALU

109

Bonus Code Slide

110

Bonus Code Slide

111

Quadratic scaling around 0.0
Adds more precision to ‘flat normals’

112

113

114

115

Real world results differ a bit from theoretical data.
In certain cases we couldn’t use packing due to mismatched texture resolutions
provided by art, thus ambiguity in packing rules.

116

117

118

119

120

121

122

123

124

Notice crate on the right lacking reflection shadowing.

125

Notice significantly improved localized shadowing near room corners.

126

Bonus Code Slide

127

