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Figure 1: Light grid near a baked source without any deringing, our algorithm, and adding extra windowing from a punctual
source. Negative values drawn in red.

ABSTRACT
Spherical Harmonics (SH) are a convenient basis for representing
various signals in computer graphics, with lighting and visibility
being themost common.While the inputs tend to be strictly positive,
after projection the reconstructed function can be negative. The
projection can also exhibit "ringing" artifacts, oscillations that are
common with least squares. This paper presents an algorithm to
efficiently and conservatively solve for a windowing function that
results in a strictly positive function by minimizing a univariate
polynomial that works well for irradiance signals in video games.
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1 INTRODUCTION
Spherical harmonics (SH) are an orthonormal basis on the unit
sphere. They are used extensively in interactive computer graphics[7,
8] and games [1] to encode lighting, visibility and more general
light transport[10]. For lighting in video games, there are other
bases that are used as well[4–6], but even then SH are often used
as an intermediate basis[3]. Even when projecting strictly posi-
tive functions like lighting and visibility, the resulting projection
can end up having negative values or oscillations. Oscillations are
exacerbated with the move to physically based lighting that has
high dynamic range. The common solution is to "window" the
function[2, 8, 10], trading off blurring with aliasing. What the prior
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work is largely missing, and this paper addresses, is how to deter-
mine the amount of windowing to apply in a given scenario. It is
often simply tweaked by hand.

In this paper we focus on the most common case in games, which
is irradiance encoded as quadratic spherical harmonics. We do this
by efficiently computing a conservative bound on the smallest value
of the function, and search for a windowing parameter that makes
this non-negative.

2 SPHERICAL HARMONICS
The real spherical harmonics can be expressed in spherical coordi-
nates:
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where Pml are the associated Legendre polynomials and Km
l are the

normalization constants

Km
l =

√
(2l + 1)(l − |m |)!
4π (l + |m |)! .

They are indexed by band l and function in a bandm, where l is
a non-negative integer, andm is an integer in [−l, l] in band l . An
order O SH consists of all the bands between 0 and O − 1, which
has O2 basis functions. A function f (s) has projection coefficients
fml , or using a single index fi where i = l(l + 1) +m. This form
is convenient for symbolic computations and evaluating analytic
integrals, but is expensive to evaluate at run-time. SH can also be
evaluated efficiently as polynomials on the unit sphere[9]. The basis
is orthogonal, closed under rotations, and can accurately represent
smooth functions using a small number of bands.

2.1 Zonal Harmonics
Any function that has circular symmetry in Z projects into only
the Zonal Harmonics (ZH), with one basis function per band. A SH
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Figure 2: Rows are bands l , columns arem values going from −l to l . Red is positive, blue is negative, radius is the absolute value.
The central column are the Zonal Harmonics, notice how the pair of ±m basis functions are rotated copies, and the non-zonal
functions have symmetric signs for all local maxima.

function f and a ZH function h can be convolved in closed form
using the following equation:

(f ∗ h)ml =

√
4π

2l + 1 f
m
l h0l =

fml h0l
K0
l

. (2)

When discussingwindowing functions, we refer to the coefficient
h0l /K

0
l which is the per-band scaling coefficient. All of the kernels

we look at have DC integrate to one, preserving the average value
over the sphere.

2.2 Relevant Properties of Spherical
Harmonics

The "optimal linear direction" [11] is trivial to compute from the
linear SH coefficients: (−f3,−f1, f2). If the SH are rotated so that
the "optimal linear direction" aligns with the Z axis, the non-Z
linear basis functions f −11 and f 11 vanish.

Any pair of ±m basis functions is a rotation in Z of a single
function, with a phase shift of 90/m. When l > 1 andm , 0 this
function also has symmetry so that for any local maxima, there
is rotation around Z where the same local maxima have opposite
sign. See Figure 2.

For a function f , the reconstruction of a pair ofm coefficients
always results in a scaled rotation of the basic function. ie: f −22 Y−2

2 +

f 22 Y
2
2 = aY 2′

2 where Y 2′
2 is a rotation in Z of the basis function. This

comes from the trigonometric addition theorems, the phase shift
(rotation) is not used, but the new amplitude is a =

√
f −22

2
+ f 22

2.

This is just like how any sinusoid of a fixed frequencyω can always
be expressed as a linear combination of a sin and a cosine of the
same frequency.

2.3 Finding the minimum value of a spherical
harmonic

The exact location and value of the minimum of a spherical har-
monic function involves finding the roots of a quadratic polynomial
in R3 restricted to the unit sphere. This can be done using multi-
ple starting points and a non-linear solver[8], but is more than is
needed. If you want to just know conservatively if a SH function
has a negative or not, a bound can be computed accurately.

First rotate the SH into a coordinate system with the "optimal
linear direction" along the Z axis. This is done once, and does not
need to be inverted. This aligns Z with the linear gradient. The
computation will exactly evaluate the ZH basis functions in this
coordinate systems, the only remaining basis functions are the
two pairs of |m | > 0 basis functions that will be handled using a
conservative bound. For the |m | > 0 basis functions, any pair of
|m | = n are simple rotations of the same functions in Z . This means
that there is some phase angle ϕ that has a maximal positive value,
and due to symmetry a negative copy exists, and this contour can
be used to determine the most negative location as a function of Z .

2.3.1 Finding the minimum value of a zonal harmonic. A zonal
harmonic of a function f is the polynomial:
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This is a quadratic polynomial in z, and the minimum can be
trivially found. Putting it in the canonical form az2 + bz + c , the
coefficents are: a = f6

√
53z2

4
√
π

, b = f2
√
3z

2
√
π

and c =
f0

2
√
π
−

f6
√
5

4
√
π
. The

minimum value of this polynomial with 1 ≥ z ≥ −1 is simple to
compute. If a > 0 the location of the minimum is at zmin =

−b
2a ,

if 1 > zmin > −1 simply evaluate the quadratic at that location.
Otherwise the minimum is at one of the end points, which have
values a + b + c and a − b + c .

2.3.2 |m | = 2. The outer most |m | can also be computed analyti-
cally. The polynomial form of the basis function is:

Y 2
2 =

√
15(x2 − y2)

4
√
π

. (4)

The |m | = 2 pair of basis functions sum to a rotated version of
either basis function with amplitude q2 =

√
f 24 + f 28 . The Y

2
2 basis

function is at a maximum when y = 0, and due to symmetry the
negative of this will be the minimum. The polynomials are on the
sphere, x2 + y2 + z2 = 1. The maximum contour can be expressed
as a function of z when y = 0 since x2 = (1−z2),

√
15(1−z2)
4
√
π

, and the
minimum is simply the negative. This is added to the ZH quadratic
polynomial, where a = azh +

q2
√
15

4
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and c = czh −
q2
√
15

4
√
π
, and

the minimum includes everything but the |m | = 1 pair of basis
functions.
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Figure 3: Basis functions for |m | = 2 and |m | = 1. z
√
1 − z2 is

not a polynomial, but is well behaved.

2.3.3 |m | = 1. Up to this point, the z and minimum are exact,
while the phase is unknown, but could be computed. The reason
the algorithm is a conservative bound is how |m | = 1 is dealt with,
assuming it is in the worst possible phase with respect to |m | = 2.

Y 1
2 = −

√
15xz
2
√
π
. (5)

The xz basis function is at a maximum when y = 0. In that case
x =

√
1 − z2, so as a function of z it is z

√
1 − z2. The coefficient

for this basis function is
√
15
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2
7

2
√
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. This function is smooth, has a
minimum value of −0.5 at −1/

√
2 and the minimum can be found

using Newtons method, with an initial guess at the minimum of
this basis function.

Given the lower bound of the |m | = 1 basis function of −0.5, an
early out exists that can skip using Newtons method. The |m | = 1
basis function is positive in the upper hemisphere, which in practice
is not a problem since the negative values tend to be below the
"optimal linear direction". The optimization could split between the
upper and lower hemispheres, forcing the function to be negative
on both sides if this was an issue, or run twice with the sign of the
coefficient negated.

2.4 Deringing
A thorough discussion of windowing with SH is presented in [8].
At a high level you need the coefficients per band to decrease,
smoothly to zero at some cut-off frequency. For this paper, we are
not explicitly evaluating a windowing function but instead using a
table of windowing coefficients. We perform a binary search with
linear interpolation to find the least amount of windowing that
makes the resulting function non-negative. One end of the table is
a delta function, so no windowing, and at the other end we have a
windowing function that makes the projection of a delta function
strictly positive after convolution with the clamped cosine. We
window by sinc4, including an extra attenuation of the linear band
to make the function non-negative.
where l is the SH band index and w is the band the windowing
function becomes zero, and should be greater than the cutoff band
being used. The explicit values used are:

w inf 16.7 11.3 10 9 7 5.6
l1 1 0.9941 0.9872 0.9634 0.9602 0.9184 0.8915
l2 1 0.9766 0.9493 0.9355 0.9207 0.8710 0.8030
l3 1 0.9478 0.8880 0.8584 0.8270 0.7241 0.5904
Table 1: Window size and per band scaling coefficients.

The most aggressive window makes the irradiance of a delta
function have a strictly positive projection, as can be seen in Figure
4. Any positive signal can always be interpreted as a linear combina-
tion of delta functions, if those are windowed to be strictly positive,
the sum will be positive, this is our most conservative filter.(

sin π l
w

π l
w

)4
, (6)

3 DISCUSSION
Windowing values are computed separately for the RGB coeffi-
cients, and the minimum is chosen and applied to all three color
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Figure 4: The irradiance of a delta function from [π/2, π ] has
a negative and positive lobe. The windowing shown here is
our most aggressive, making the projection non-negative.

channels. Filtering the color channels differently could result in
color shifts otherwise. We tend to store radiance functions, but
apply windowing values to them so that after convolution with a
clamped cosine kernel they are non-negative.

Punctual lights can have a small positive ring, a hand tuned
convolution is added to direct lights before adding them to SH, the
per-band scaling coefficients for linear/quadratic are 0.92 and 0.73,
while indirect light and skylight only runs the standard algorithm.
Splitting the source this way and consistently windowing them
separately is useful in practice.

Figure 5: An earlier deringer used the ratio of linear to dc en-
ergy, but this over smoothed the lighting and left some spots
negative, rendered as black. While the new deringer has
strictly positive irradiance functions and preservesmore an-
gular detail.

We have gone through several algorithms to dering spherical
harmonics. Using the ratio of linear to quadratic energy and a simi-
lar binary search worked well until we added linear light sources,
that push a lot of energy outside of the zonal harmonics, leading us
to the algorithm presented in the paper. We also started to do more
multiplies with visibility functions at run-time, where having nega-
tives in the lighting could cause more serious problems compared
to just looking at raw irradiance.

4 CONCLUSIONS AND FUTUREWORK
Deringing spherical harmonics can be difficult, and we went down
several blind alleys before coming up with the solution presented
here. The algorithm is fast, simple to implement and proved to be
robust in practice on multiple games.

These ideas could be extended to higher order spherical har-
monics, where the functions with 0 < |m | < l would always be
a conservative bound. One could try and reason about the phase
differences between the |m | = 1 and |m | = 2 basis functions, gen-
erating a tighter bound. It is unclear how useful this would be in
practice, since we already do some extra windowing for punctual
sources.

This work only applies to spherical functions, extending these
ideas to better handle hemispherical functions is an interesting
avenue for future work. Finally windowing separate components
(direct, indirect, possibly by intensity, etc.) more carefully would
result in a non-linear filter that better respects directional features.
Our extra windowing for direct lights is a crude version of this.
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