
Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Jorge Jimenez
Graphics R&D Technical Director - Activision Blizzard

SIGGRAPH Advances in Real-Time Rendering 2017 | Digital Dragons Programming and Technology Track 2018

DYNAMIC TEMPORAL ANTIAL IAS ING
AND UPSAMPLING

in Call of Duty

Presenter
Presentation Notes
Note for the reader: this talk was first presented in Advances in Real-Time Rendering 2017. An slightly updated version was presented in Digital Dragons 2018. This slide deck corresponds to the updated 2018 presentation.

Hi,

My name is Jorge Jimenez,
I’m a Graphics R&D Technical Director at Activision Central Tech.

Over the past few years I worked on all current generation Call of Duty titles,
mostly focusing on characters and post effects.

In the last couple of years there has been a strong push towards 4k imaging,
with the recent introduction of the PS4 Pro and the Xbox One X.

As the resolution increased in the last two decades,
it became more and more important
to leverage spatial and temporal information to reduce the shading costs.

In this presentation I’ll be talking about
the dynamic antialiasing solution that we shipped in Infinite Warfare and World War 2,
and the experimental technology created towards the end of the projects
that we hope to ship in future games.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Presenter
Presentation Notes
So lets start by motivating what is this
all about.

And for that, let me use this scene.

Here we have the first frame of the sequence…

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Presenter
Presentation Notes
…and here the second.

[back and forth]

Most of the screen remained the same, even if it slightly moved.

In the past, we thrown all the pixels that we shaded in the previous frames, and started from scratch.

But that doesn’t seem to be a very good idea.

Temporal supersampling essentially allow to reuse this information from frame to frame,
rather than doing everything from scratch.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Presenter
Presentation Notes
Of course this not easy, because as mentioned before,
things move.

So we need to know where a pixel was in the previous frame.

And for that, velocities, or also called motion vectors, are used.

For example, here we have the velocity for a pixel,
which is illustrated in green here.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Reprojection Ghosting

Without
Temporal Supersampling

With
Temporal Supersampling

Presenter
Presentation Notes
Then again, this is not going to be so easy.

If we reproject to a place where the object
was not visible in the previous frame,
we get ghosting.

There are one million ways to deal with this.

And one million issues that raise from trying to fix the issue.

But the most typical solution is to use the neighborhood clamp…

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Neighborhood Clamp [Lottes2011]

Presenter
Presentation Notes
…which consists in restricting the reprojected pixel p, in blue here,

to the color range in the neighborhood around the current frame pixel c, in red here.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Filmic SMAA

• Morphological Component
• Temporal Supersampling Component
• Temporal Filtering Component

[Jimenez2016] Filmic SMAA: Sharp Morphological and Temporal
Antialiasing

Presenter
Presentation Notes
So, that was a quick recap of what is temporal AA,
and for more details, I’ll refer you to the presentation on screen.

Here, we are using Filmic SMAA as basis,
but the upsampler we are about to present is an orthogonal extension to it,
with most of the ideas being applicable to any temporal AA technique.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic Resolution and Infrastructure

• Adam Micciulla
• Akimitsu Hogge
• Angelo Pesce
• Michael Vance
• Michal Drobot
• Wade Brainerd

Presenter
Presentation Notes
Before I continue,
I’d like to mention that this was a collaborative effort,
with many pieces working together in a single system.

Everybody on this slide was key to make this happen.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Intro

• Dynamic resolution widely used for 60fps games
• Change output resolution according to load

Light workload Heavy workload

Presenter
Presentation Notes
Dynamic resolution is nowadays, a commonly used tool in 60 fps games,
where fluid frame rate has absolute priority.

The idea is simple, under light workload,
we render 1080p images.

Then, under high workload,
the resolution is reduced to guarantee a smooth frame rate.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Intro

• Temporal upsampling deployed on many PS4 Pro titles
• Combine previous and current frame for a higher resolution image

Current Frame Previous Frame Output Frame

Presenter
Presentation Notes
On the other hand, we have temporal upsampling,
where two different frames are assembled together for a higher resolution image.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Intro

• Dynamic Resolution + Temporal upsampling Problem

Light workload Heavy workload

Presenter
Presentation Notes
But, what happens if we want to use both?

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Intro

• Dynamic Resolution + Temporal upsampling Problem

Light workload Heavy workload

Output Size Output Size

Presenter
Presentation Notes
If we combine both techniques, the upsampled image,
which is marked with green and blue here,
will always be bigger than the output size,
which is marked on orange,
meaning that we guarantee a 1080p image.

But note that in the light workload case
we are creating a bigger image than the output size.

So, what we can do with all that extra information?

We are going to use it to increase the antialiasing quality.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Filmic SMAA TU2X
Dynamic AA 2X

Presenter
Presentation Notes
So, let’s dive into the first part, Filmic SMAA TU2x.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Filmic SMAA TU2x Highlights

• Dynamic resolution + temporal upsample combo
• Rather than virtually vary the resolution, vary the antialiasing quality

• Always outputs 1080p
• On the upper end: 2x supersampling
• On the lower end: 1x supersampling
• In between: 1x to 2x supersampling

• Can directly upsample from any resolution to 1080p
• From [960x1080, 1920x1080]
• Rather than just from 960x1080

Presenter
Presentation Notes
This technique allows to combine dynamic resolution and temporal upsampling
in such a way that rather than varying the resolution,
we vary the antialiasing quality.

We always output 1080p.

On the upper end of the dynamic resolution, we output 2x supersampling.

On the lower end, we output 1x.

And then, in between, we have a variable antialiasing quality from 1 to 2x.

So, that means that we can directly upsample
from any resolution higher than 960 by 1080 to full hd.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Big Picture

Current Frame 1440x1080
Odd Columns

Previous Frame 1440x1080
Even Columns

Virtual 2880x1080 Final 1920x1080
With horizontal supersampling

Presenter
Presentation Notes
So, here we have the big picture.

We can see how the previous and current frames
are used to assemble a virtual image of twenty eight eighty by ten eighty,
which is then bilinearly downsampled to target output resolution.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Big Picture

• Dynamic resolution: (our previous setup)

• Dynamic AA:

SMAA AAed Scene BufferScene Buffer Bilinear
Upsample Framebuffer

1200x1080 (for example) 1200x1080 1920x1080

SMAAScene Buffer Framebuffer

1200x1080 (for example) 1920x1080

Antialiasing

Antialiasing

Presenter
Presentation Notes
Notice that for the case of using dynamic resolution,
antialiasing runs before a bilinear upsample.

In the dynamic AA approach,
antialiasing directly resamples to 1080p.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Subpixel Jittering

SMAA T2x
(Default Diagonal Jitter)

SMAA T2x
(Horizontal Jitter)

New SMAA TU2x Upsampler
Based on [Valient2014]

Presenter
Presentation Notes
Here on the left we have typical 2x diagonal supersampling.

For upsampling, the first step is to switch to an horizontal jitter.

Then, rather than blending the subsamples as we see on the middle,
we output them as individual pixels.

For those not familiar with supersampling, you can think of this as generating two different images,
moving the camera a little bit horizontally,
and then interleaving these two images together,
which doubles the image resolution.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Virtual Bilinear Downsample

• We start from current and
previous frames

• Rendered with different
horizontal subpixel offsets

Current FramePrevious Frame

Presenter
Presentation Notes
So, we have correctly placed previous and current frame pixels.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Virtual Bilinear Downsample

• We build a 2x virtual image by
interlacing the previous and
current frames

Virtual 2x Image

Presenter
Presentation Notes
From there we build a 2x virtual image by interlacing these pixels.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Virtual Bilinear Downsample

• However our output image is
smaller

Virtual 2x Image

Output Image

Presenter
Presentation Notes
But, as mentioned before,
now our output image is smaller than the virtually upsampled one.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Virtual Bilinear Downsample

• We downsample the virtual 2x
image to output resolution

Virtual 2x Image

Output Image

Presenter
Presentation Notes
So, what we want to do
is to bilinear downsample this virtual image.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic AA Algorithm

• First step:
• Calculate position of output image

pixel in the virtual 2x image
• Bilinear weight will be the

fractional of this position

float upsampledPosition = 2.0 * inputDimensions.x * texcoord . x - 0.5 ;
float weight = frac (upsampledPosition);

Virtual 2x Image

Output Image

weight

Presenter
Presentation Notes
For that, the first step is to calculate the position of the output pixel,
marked with a red circle,
on the virtual image, marked with a red square.

The bilinear weight will be the fractional of this position,
as shown in the figure.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic AA Algorithm

• Second step:
• Odd positions need to lerp across 2-pixel block boundaries

int mod2 = SMAAMod2(upsampledPosition);
float currentOffset = mod2 && subsampleIndex ? 1.0 : 0.0 ; // | c | p | - > | . | p | c |
float previousOffset = mod2 && ! subsampleIndex ? 1.0 : 0.0 ; // | p | c | - > | . | c | p |

0 1 0 1
mod2 mod2

subsampleIndex = 0 subsampleIndex = 1
current current previousprevious

odd position

Presenter
Presentation Notes
Odd positions need to lerp across 2-pixel block boundaries,
which means that for example,
for the position marked in red…

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic AA Algorithm

• Second step:
• Odd positions need to lerp across 2-pixel block boundaries
• For them, offset current or previous frame colors

int mod2 = SMAAMod2(upsampledPosition);
float currentOffset = mod2 && subsampleIndex ? 1.0 : 0.0 ; // | c | p | - > | . | p | c |
float previousOffset = mod2 && ! subsampleIndex ? 1.0 : 0.0 ; // | p | c | - > | . | c | p |

0 1 0 1
mod2 mod2

subsampleIndex = 0 subsampleIndex = 1
current current previousprevious

Presenter
Presentation Notes
…we would need to move the previous pixel to its right.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic AA Algorithm

• Third step:
• Apply previously calculated offsets
• Snap to input texel centers
• Convert to texture coordinates
• Beware slightly optimized code below

texcoord . x = (1.0 / inputDimensions.x) * (floor (0.5 * (floor (upsampledPosition) + currentOffset) + 0.25) + 0.5);
previousTexcoord . x = (1.0 / inputDimensions.x) * (floor (0.5 * (floor (upsampledPosition) + previousOffset) + 0.25) + 0.5);

Presenter
Presentation Notes
The next step is to apply those offsets,
to snap to input texel centers,
and to convert to texture coordinates.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic AA Algorithm

• Fourth step:
• Blend of current and previous has current on the left
• If previous frame color is on the left, reverse the weight

bool subsampleSwap = SMAAXor(subsampleIndex , mod2);
weight = subsampleSwap ? weight : 1.0 – weight ;
outputColor = lerp (currentColor , previousColor , weight);

currentprevious

1 - weight

current previous

weight

Presenter
Presentation Notes
Then, the final step needs to account for the fact
that we always blend current and previous colors assuming that the current one is on the left.

If that assumption doesn’t hold, we need to reverse the weight.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Filmic SMAA TU2x Highlights

• Dynamic resolution + temporal upsample combo
• Rather than virtually vary the resolution, vary the antialiasing quality

• Always outputs 1080p:
• On the upper end: 2x supersampling
• On the lower end: 1x supersampling
• In between: 1x to 2x supersampling

• Can directly upsample from any resolution to 1080p
• From [960x1080, 1920x1080]
• Rather than just from 960x1080

Presenter
Presentation Notes
Coming back to the technique highlights,
notice that we only do 1x supersampling on the lower end.

We have morphological antialiasing and temporal filtering for stability,
but we are still missing subpixel rendering for the lower dynamic resolutions.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Filmic SMAA TU4X
Dynamic AA 4X

Presenter
Presentation Notes
So, this is where the TU4x mode comes into play.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Filmic SMAA TU4x

• Presented method so far can do up to 2x upsampling
• We have an experimental method that can do up to 4x upsampling

• Uses diagonal jitter rather than horizontal:
• Current frame
• Previous frame

• Reconstructs:
• Missing samples from orange and blue samples

Presenter
Presentation Notes
To increase the subpixel rendering quality
we will upsample to a virtual 4x bigger image.

To accomplish that, we will use a diagonal jitter rather than an horizontal one.

In the following slides I’ll show how we reconstruct the green samples
from the orange and blue ones,
which correspond to the current and previous frames respectively.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Filmic SMAA TU4x
• Pixel art upsampling algorithms have been doing similar reconstructions (hqx)

• Core difference is that the input here is checkerboarded => Easier reconstruction

• Similar problem to demosaicing [Phelippeau2009]
• We extended the highly efficient [Berghoff2016] differential blend to a temporal checkerboard

HQX Input HQX Output

Presenter
Presentation Notes
There exists an extensive collection of pixel art techniques that do this for orthogonal grids.

But fortunately, diagonal ones are much easier to handle.

Berghoff recently introduced the differential blend method,
which allows to very efficiently reconstruct missing information on checkerboard inputs.

We will extend this method to handle a temporal checkboard rather than a spatial one.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

[Berghoff2016] Differential Blend Recap

• This is the checkerboarded input
• Green pixels are missing

Presenter
Presentation Notes
Before continuing, let me recap the original technique.

This is the checkboarded input,
where the green pixels are missing.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

[Berghoff2016] Differential Blend Recap

• This is the target ideal
reconstruction

Presenter
Presentation Notes
And this is the ideal reconstruction using that information.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

[Berghoff2016] Differential Blend Recap

• Determine color of current pixel
by checking horizontal and
vertical neighbor blends

• Keep the neighbor blend with
the lowest color difference

Presenter
Presentation Notes
The color of the pixel marked in red is determined
by checking the horizontal and vertical neighbors.

We will blend either vertically or horizontally
depending on which direction has the lowest color difference.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

[Berghoff2016] Differential Blend Recap

• Determine color of current pixel
by checking horizontal and
vertical neighbor blends

• Keep the neighbor blend with
the lowest color difference

• For the current pixel, that would
be the horizontal blend

Presenter
Presentation Notes
So, for the this case we would blend horizontally.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Temporal Checkerboard
float3 ne i ghbor hood1[4] = {

c ur r e nt Ne i ghbor hood[SMAA_NEI GHBORHOOD_WEST] , / / SMAA_NEI GHBORHOOD_WEST
c ur r e nt Col or , / / SMAA_NEI GHBORHOOD_EAST
pr e vi ous Col or , / / SMAA_NEI GHBORHOOD_NORTH
pr e vi ous Ne i ghbor hood[SMAA_NEI GHBORHOOD_SOUTH] / / SMAA_NEI GHBORHOOD_SOUTH

};

f l oa t 3 ne i ghbor hood2[4] = {
pr e vi ous Col or , / / SMAA_NEI GHBORHOOD_WEST
pr e vi ous Ne i ghbor hood[SMAA_NEI GHBORHOOD_EAST] , / / SMAA_NEI GHBORHOOD_EAST
c ur r e nt Ne i ghbor hood[SMAA_NEI GHBORHOOD_NORTH] , / / SMAA_NEI GHBORHOOD_NORTH
c ur r e nt Col or / / SMAA_NEI GHBORHOOD_SOUTH

};

f l oa t 3 we i ght s = SMAADi f f e r e nt i a l Bl e ndCa l c ul a t e We i ght (ne i ghbor hood1, ne i ghbor hood2) ;
f l oa t 3 pr e vi ous Re c ons t r uc t e dCol or = SMAADi f f e r e nt i a l Bl e nd(ne i ghbor hood1, we i ght s) ; / / p '
f l oa t 3 c ur r e nt Re c ons t r uc t e dCol or = SMAADi f f e r e nt i a l Bl e nd(ne i ghbor hood2, we i ght s) ; / / c ‘

pr e vi ous Col or = l e r p(pr e vi ous Col or , pr e vi ous Re c ons t r uc t e dCol or , 0. 5) ;
c ur r e nt Col or = l e r p(c ur r e nt Col or , c ur r e nt Re c ons t r uc t e dCol or , 0. 5) ;

f l oa t 3 SMAADi f f e r e nt i a l Bl e nd(f l oa t 3 ne i ghbor hood[4] , f l oa t 3 we i ght s)
{

f l oa t 4 c ol or = 0. 0;
c ol or += f l oa t 4(ne i ghbor hood[SMAA_NEI GHBORHOOD_WEST] + ne i ghbor hood[SMAA_NEI GHBORHOOD_EAST] , 1 . 0) * we i ght s . x ;
c ol or += f l oa t 4(ne i ghbor hood[SMAA_NEI GHBORHOOD_NORTH] + ne i ghbor hood[SMAA_NEI GHBORHOOD_SOUTH] , 1 . 0) * we i ght s . y ;
r e t ur n (0. 5 * we i ght s . z) * c ol or . r gb;

}

Presenter
Presentation Notes
Here we have the temporal checkerboard.

For a given pixel, we need to determine the pixels p and c,
using the algorithm presented in the TU2x method.

From there we will reconstruct the pixel c prime and p prime using differential blends.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Temporal Checkerboard

Downsample (Average)

Filmic SMAA TU2x
960x1080 to 1920x1080

Filmic SMAA TU4x
960x1080 to 1920x1080 + 2xAA

Presenter
Presentation Notes
Once we have reconstructed those pixels,
we simply perform a 2x vertical downsample.

On one hand, p and p prime…

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Temporal Checkerboard

Downsample (Average)

Filmic SMAA TU2x
960x1080 to 1920x1080

Filmic SMAA TU4x
960x1080 to 1920x1080 + 2xAA

Presenter
Presentation Notes
…and c prime and c on the other.

This yields 2x vertical antialiasing as can be seen in the comparison on the right.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

[Berghoff2016] Checkerboard

• Algorithm:
• Render to EQAA spatial checkboard
• Fills checkerboard with temporal information
• If it fails, uses differential blend over the spatial checkerboard to fill missing pixels
• Temporal and spatial reconstruction overlap, spatial one backs up temporal one
• 2x output

• Our approach:
• Render temporal checkerboard
• Upsample horizontally using temporal information
• Upsample vertically using spatial checkerboard reconstruction
• 4x output

Presenter
Presentation Notes
As a recap,
the core difference between Berghoff approach and ours
is that we use temporal upsampling and spatial reconstruction separately, for a net 4x output.

Berghoff uses the spatial reconstruction as a backup of temporal upsampling,
meaning a 2x output, which stands for different tradeoffs.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

960x1080 + FXAA

Presenter
Presentation Notes
Let’s see some results.

This is the lowest dynamic resolution step, with no upsampler…

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

960x1080 + Filmic SMAA TU4x

Presenter
Presentation Notes
…and this is with the TU4x upsampler.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

1440x1080 + Filmic SMAA TU4x

Presenter
Presentation Notes
This is an intermediate step…

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

1920x1080 + Filmic SMAA T2x

Presenter
Presentation Notes
…and this the biggest dynamic resolution step, full HD.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

960x1080 + FXAA

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

960x1080 + Filmic SMAA TU4x

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

1440x1080 + Filmic SMAA TU4x

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

1920x1080 + Filmic SMAA T2x

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

960x1080 + FXAA

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

960x1080 + Filmic SMAA TU4x

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

1440x1080 + Filmic SMAA TU4x

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

1920x1080 + Filmic SMAA T2x

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

960x1080 + FXAA

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

960x1080 + Filmic SMAA TU4x

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

1440x1080 + Filmic SMAA TU4x

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

1920x1080 + Filmic SMAA T2x

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

4x Upsampler

• So far used for 2x vertical AA
• Horizontal is dynamic bilinear as Dynamic AA 2x
• Fixed vertical bilinear downsample

• Full 4x output
• Doubles state-of-the-art upsampler capabilities
• Dynamic AA from 1920x1080 to 3840x2160 (with

no bilinear upscale involved)
• Full 4k pixels regardless of input resolution

• 2k texture details when starting from quarter res

• 4k texture details when starting from half res

Downsample (Average)

Presenter
Presentation Notes
The technique presented so far performs a fixed vertical bilinear downsample.

But those samples can be output into individual pixels instead.

Or going further, same rationale used for the horizontal bilinear downsample
can be used here vertically,
for a full dynamic 4x output.

This means that for 4k we can do dynamic AA from 1k to 4k.

Let’s see that.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic Resolution

Light workload Heavy workload

Output Size (4k) Output Size (4k)

Presenter
Presentation Notes
Remember that dynamic resolution changed output resolution
depending on workload
as shown in this slide.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

2x Upsampler

Light workload Heavy workload

Output Size (4k) Output Size (4k)

Presenter
Presentation Notes
So, if the 2x upsampler was doing this…

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

4x Upsampler

Output Size (4k) Output Size (4k)

Light workload

Heavy workload

1k

Presenter
Presentation Notes
…the 4x upsampler will do this instead.

As we can see on the right,
in the worst dynamic resolution case, we will be rendering a 1k scene,
and upsampling it to 4k individual pixels.

So, let’s see how it looks like in this worst case scenario.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

No upsampling

Results

Presenter
Presentation Notes
Here we have there images without temporal upsampling…

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Filmic SMAA TU2x
(Morphological removed to see upsampling effect in isolation)

Results

Presenter
Presentation Notes
…here with 2x upsampling.

Notice the increased horizontal resolution.

[go back and forth]

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Filmic SMAA TU4x
(Morphological removed to see upsampling effect in isolation)

Results

Presenter
Presentation Notes
And here we have with 4x upsampling,

where we can observe increased vertical resolution as well.

[go back and forth]

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

No upsampling

Results

Presenter
Presentation Notes
If we switch back to no upsampling, we can see the full effect.

[go back and forth]

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

New Temporal Toolset

Presenter
Presentation Notes
The next part is the new temporal toolset.

So far we have increased the quality,
but in that process we also made our antialiasing shader more expensive,
so it was time for optimization.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

1-Sample Spatio-Temporal Bicubic
Resampling Intro
• History buffer resampling leads

to numerical diffusion error
• Manifests as blur

Presenter
Presentation Notes
Temporal antialiasing techniques typically use exponential history buffers
to obtain information from previous frames.

Reprojecting the pixel position
to fetch the history buffer
leads to numerical diffusion error,
which manifests as blur.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

1-Sample Spatio-Temporal Bicubic
Resampling Intro
• History buffer resampling leads

to numerical diffusion error
• Manifests as blur

• Bicubic filtering mitigates this
problem [Jimenez2016]

Presenter
Presentation Notes
The good news are that simply using bicubic filtering mitigates this issue,
as we shown in our previous work.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

Presenter
Presentation Notes
To show how severe is this issue, let me show this movie.

[click]

Red is with bilinear filtering, and green is bicubic.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

5-Sample Bicubic Resampling [Jimenez2016]

• Optimized Catmull-Rom uses 9
bilinear samples to filter the 4x4
area

• http://vec3.ca/bicubic-filtering-in-fewer-taps/
• http://http.developer.nvidia.com/GPUGems2/g

pugems2_chapter20.html

(0,0)

(-1,-1)

(2,2)

Bilinear access

Presenter
Presentation Notes
The bad news are that bicubic filtering is too expensive.

Here we have the standard 9 sample bicubic implementation.

http://vec3.ca/bicubic-filtering-in-fewer-taps/
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter20.html

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

5-Sample Bicubic Resampling [Jimenez2016]

• Ignoring the 4 corners yields
very similar results

• Reduces from 9 to 5 samples (0,0)

(-1,-1)

(2,2)

Presenter
Presentation Notes
And here is what we proposed in 2016.

Removing the corners of the filter
allows to reduce from 9 to 5 samples with little quality loss.

But, we wanted something faster.

From now on, I’ll refer to this approach as the 5-sample bicubic filter.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Bicubic Resampling
• Mitchell-Netravali bicubic equation is computationally expensive:

𝑓𝑓 𝑥𝑥 = �
12− 9𝐵𝐵 − 6𝐶𝐶 𝑥𝑥 3 + −18 + 12𝐵𝐵 + 6𝐶𝐶 𝑥𝑥 2 + 6 − 2𝐵𝐵 , 𝑥𝑥 < 1

−𝐵𝐵 − 6𝐶𝐶 𝑥𝑥 3 + 6𝐵𝐵 + 30𝐶𝐶 𝑥𝑥 2 + −12𝐵𝐵 − 48𝐶𝐶 𝑥𝑥 + (8𝐵𝐵 + 24𝐶𝐶), 1 ≤ 𝑥𝑥 ≤ 2
0, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• Temporal effects are more forgiving than spatial ones with respect to quality

• What is really needed for temporal resampling?
• Spatio-Temporal Optimization
• Computation Optimization

Presenter
Presentation Notes
If we take a look to Mitchell-Netravali equation, which is one of the options for bicubic filtering,
we can see that it is computationally expensive.

No doubt we need this for spatial filters, but temporal effects are more forgiving.

So, what is really needed for temporal resampling?

To answer that, we will present two optimizations in the next few slides.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Spatio-Temporal Optimization

• The color information for the 5-
sample bicubic is the following:

• History color at texture coordinate
• ℎ𝑚𝑚

• History color neighborhood around
texture coordinate

• ℎ𝑤𝑤
• ℎ𝑒𝑒
• ℎ𝑛𝑛
• ℎ𝑠𝑠

• Idea: perform bicubic filtering across
time

Presenter
Presentation Notes
First one, is a spatio-temporal optimization.

To explain it, let me recap the information needed for the 5-sample bicubic, which is:

the history color at the reprojected texture coordinate,
marked on blue

and its color neighborhood,
marked on orange.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Spatio-Temporal Optimization

• The color information for the 5-
sample bicubic is the following:

• History color at texture coordinate
• ℎ𝑚𝑚

• History color neighborhood around
texture coordinate

• ℎ𝑤𝑤
• ℎ𝑒𝑒
• ℎ𝑛𝑛
• ℎ𝑠𝑠

• Idea: perform bicubic filtering across
time

Presenter
Presentation Notes
So, the idea is to perform bicubic filtering across time,
rather than on the space domain.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Spatio-Temporal Optimization
• Estimate history neighborhood colors ℎ with

current frame colors 𝑐𝑐:
• ℎ𝑤𝑤 ≈ ℎ𝑚𝑚 + (𝑐𝑐𝑤𝑤 − 𝑐𝑐𝑚𝑚)
• ℎ𝑒𝑒 ≈ ℎ𝑚𝑚 + (𝑐𝑐𝑒𝑒 − 𝑐𝑐𝑚𝑚)
• ℎ𝑛𝑛 ≈ ℎ𝑚𝑚 + (𝑐𝑐𝑛𝑛 − 𝑐𝑐𝑚𝑚)
• ℎ𝑠𝑠 ≈ ℎ𝑚𝑚 + (𝑐𝑐𝑠𝑠 − 𝑐𝑐𝑚𝑚)

• We already have them for the neighborhood clamp
• Very good match if reprojecting inside of an object
• On edges they will be different

• Slightly reintroduces some aliasing
• But much sharper details
• It actually brings back real details rather than sharpening

the history buffer

• 1-sample spatio-temporal bicubic -> we just
sample ℎ𝑚𝑚

Presenter
Presentation Notes
For that, we estimate the history neighborhood colors, in orange,
with the current frame colors, in green.

Note that these colors are typically available in temporal antialiasing shaders,
as they are needed for the neighborhood clamp heuristic used to combat ghosting.

So, they are free in this context.

This means that we only need one sample
for the spatio-temporal bicubic filter.

This has some implications, that we will explain later on.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

float3 SMAABi c ubi c Fi l t e r (SMAATe xt ur e 2D c ol or Te x, f l oa t 2 t e xc oor d, f l oa t 4 r t Me t r i c s)
{

f l oa t 2 pos i t i on = r t Me t r i c s . z w * t e xc oor d;
f l oa t 2 c e nt e r Pos i t i on = f l oor (pos i t i on - 0. 5) + 0. 5;
f l oa t 2 f = pos i t i on - c e nt e r Pos i t i on;
f l oa t 2 f 2 = f * f ;
f l oa t 2 f 3 = f * f 2;

f l oa t c = SMAA_FI LMI C_REPROJ ECTI ON_SHARPNESS / 100. 0;
f l oa t 2 w0 = - c * f 3 + 2. 0 * c * f 2 - c * f ;
f l oa t 2 w1 = (2. 0 - c) * f 3 - (3. 0 - c) * f 2 + 1. 0;
f l oa t 2 w2 = - (2. 0 - c) * f 3 + (3. 0 - 2. 0 * c) * f 2 + c * f ;
f l oa t 2 w3 = c * f 3 - c * f 2;

f l oa t 2 w12 = w1 + w2;
f l oa t 2 t c 12 = r t Me t r i c s . xy * (c e nt e r Pos i t i on + w2 / w12) ;
f l oa t 3 c e nt e r Col or = SMAASa mpl e (c ol or Te x, f l oa t 2(t c 12. x, t c 12. y)) . r gb;

f l oa t 2 t c 0 = r t Me t r i c s . xy * (c e nt e r Pos i t i on - 1. 0) ;
f l oa t 2 t c 3 = r t Me t r i c s . xy * (c e nt e r Pos i t i on + 2. 0) ;
f l oa t 4 c ol or = f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 12. x, t c 0. y)) . r gb, 1. 0) * (w12. x * w0. y) +

f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 0. x, t c 12. y)) . r gb, 1. 0) * (w0. x * w12. y) +
f l oa t 4(c e nt e r Col or , 1 . 0) * (w12. x * w12. y) +
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 3. x, t c 12. y)) . r gb, 1. 0) * (w3. x * w12. y) +
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 12. x, t c 3. y)) . r gb, 1. 0) * (w12. x * w3. y) ;

r e t ur n c ol or . r gb * r c p(c ol or . a) ;
}

Computation Optimization

[Jimenez2016]

Presenter
Presentation Notes
Now to the computation optimization.

Here we have the code for the 5-sample bicubic filter that we shown in 2016.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

float3 SMAABi c ubi c Fi l t e r (SMAATe xt ur e 2D c ol or Te x, f l oa t 2 t e xc oor d, f l oa t 4 r t Me t r i c s)
{

f l oa t 2 pos i t i on = r t Me t r i c s . z w * t e xc oor d;
f l oa t 2 c e nt e r Pos i t i on = f l oor (pos i t i on - 0. 5) + 0. 5;
f l oa t 2 f = pos i t i on - c e nt e r Pos i t i on;
f l oa t 2 f 2 = f * f ;
f l oa t 2 f 3 = f * f 2;

f l oa t c = SMAA_FI LMI C_REPROJ ECTI ON_SHARPNESS / 100. 0;
f l oa t 2 w0 = - c * f 3 + 2. 0 * c * f 2 - c * f ;
f l oa t 2 w1 = (2. 0 - c) * f 3 - (3. 0 - c) * f 2 + 1. 0;
f l oa t 2 w2 = - (2. 0 - c) * f 3 + (3. 0 - 2. 0 * c) * f 2 + c * f ;
f l oa t 2 w3 = c * f 3 - c * f 2;

f l oa t 2 w12 = w1 + w2;
f l oa t 2 t c 12 = r t Me t r i c s . xy * (c e nt e r Pos i t i on + w2 / w12) ;
f l oa t 3 c e nt e r Col or = SMAASa mpl e (c ol or Te x, f l oa t 2(t c 12. x, t c 12. y)) . r gb;

f l oa t 2 t c 0 = r t Me t r i c s . xy * (c e nt e r Pos i t i on - 1. 0) ;
f l oa t 2 t c 3 = r t Me t r i c s . xy * (c e nt e r Pos i t i on + 2. 0) ;
f l oa t 4 c ol or = f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 12. x, t c 0. y)) . r gb, 1. 0) * (w12. x * w0. y) +

f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 0. x, t c 12. y)) . r gb, 1. 0) * (w0. x * w12. y) +
f l oa t 4(c e nt e r Col or , 1 . 0) * (w12. x * w12. y) +
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 3. x, t c 12. y)) . r gb, 1. 0) * (w3. x * w12. y) +
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 12. x, t c 3. y)) . r gb, 1. 0) * (w12. x * w3. y) ;

r e t ur n c ol or . r gb * r c p(c ol or . a) ;
}

Computation Optimization

[Jimenez2016]

Presenter
Presentation Notes
But ignore everything
and just look at the end of the code, marked on red.

It is just a weighted average,
where each of the 5 samples get a unique weight.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

float4 c ol or = f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 12. x, t c 0. y)) . r gb, 1. 0) * (w12. x * w0. y) +
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 0. x, t c 12. y)) . r gb, 1. 0) * (w0. x * w12. y) +
f l oa t 4(c e nt e r Col or , 1 . 0) * (w12. x * w12. y) +
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 3. x, t c 12. y)) . r gb, 1. 0) * (w3. x * w12. y) +
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 12. x, t c 3. y)) . r gb, 1. 0) * (w12. x * w3. y) ;
r e t ur n c ol or . r gb * r c p(c ol or . a) ;

Computation Optimization

Presenter
Presentation Notes
Let me take this piece of the code apart,
to keep the attention where we need to,
which is this weighted average.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

float4 c ol or =
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 0. x, t c 12. y)) . r gb, 1. 0) * w0. x +
f l oa t 4(c e nt e r Col or , 1 . 0) * w12. x +
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 3. x, t c 12. y)) . r gb, 1. 0) * w3. x +

r e t ur n c ol or . r gb * r c p(c ol or . a) ;

Computation Optimization

Presenter
Presentation Notes
And then reduce the problem to one dimension to simplify the analysis.

Here I’ve just removed the vertical samples and weights.

So, this is just a weighted average of the center pixel
and the pixels on the left and right.

Note that the center color is multiplied by w12.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

float4 c ol or =
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 0. x, t c 12. y)) . r gb, 1. 0) * (w0. x / w12. x) +
f l oa t 4(c e nt e r Col or , 1 . 0) * (w12. x / w12. x) +
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 3. x, t c 12. y)) . r gb, 1. 0) * (w3. x / w12. x) +

r e t ur n c ol or . r gb * r c p(c ol or . a) ;

Computation Optimization

Presenter
Presentation Notes
If we divide all three samples by this…

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

float4 c ol or =
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 0. x, t c 12. y)) . r gb, 1. 0) * (w0. x / w12. x) +
f l oa t 4(c e nt e r Col or , 1 . 0) * 1. 0 +
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 3. x, t c 12. y)) . r gb, 1. 0) * (w3. x / w12. x) +

r e t ur n c ol or . r gb * r c p(c ol or . a) ;

Computation Optimization

Presenter
Presentation Notes
…we have a fixed weight of 1 for the center color, marked in green here.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

float4 c ol or =
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 0. x, t c 12. y)) . r gb, 1. 0) * (w0. x / w12. x) +
f l oa t 4(c e nt e r Col or , 1 . 0) * 1. 0 +
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 3. x, t c 12. y)) . r gb, 1. 0) * (w3. x / w12. x) +

r e t ur n c ol or . r gb * r c p(c ol or . a) ;

Computation Optimization

Presenter
Presentation Notes
Then we have the weights for the left and right pixels on blue and orange.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

float4 c ol or =
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 0. x, t c 12. y)) . r gb, 1. 0) * (w0. x / w12. x) +
f l oa t 4(c e nt e r Col or , 1 . 0) * 1. 0 +
f l oa t 4(SMAASa mpl e (c ol or Te x, f l oa t 2(t c 3. x, t c 12. y)) . r gb, 1. 0) * (w3. x / w12. x) +

r e t ur n c ol or . r gb * r c p(c ol or . a) ;

Computation Optimization

x

Left Pixel Right Pixel

Presenter
Presentation Notes
So, just to recap what we have so far, we are interpolating between the gray pixels,
using the fractional x,
and the assistance of the blue and orange pixels.

Now, let’s plot how the weight for the left pixel looks like.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Plotting the weights (left pixel): 𝑚𝑚0

• 𝑚𝑚0(𝑥𝑥) = 𝑤𝑤0(𝑥𝑥)/𝑤𝑤12(𝑥𝑥)= 𝑥𝑥(1+ 𝑥𝑥−2 𝑥𝑥)
(𝑥𝑥−1) 𝑥𝑥−1

Weight
for left pixel

x

x

Left Pixel Right Pixel

0 1

Presenter
Presentation Notes
We can see how the sharpening, negative weight,
increases as the fractional of the position
becomes closer to the left pixel,
or zero in the x axis in this figure.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Plotting the weights (right pixel): 𝑚𝑚𝟑𝟑

• 𝑚𝑚3(𝑥𝑥) = 𝑤𝑤3(𝑥𝑥)/𝑤𝑤12(𝑥𝑥)= (1−𝑥𝑥) 𝑥𝑥
(𝑥𝑥−1) 𝑥𝑥−1

Weight
for right pixel

x

x

Left Pixel Right Pixel

0 1

Presenter
Presentation Notes
Then we have the same for the right pixel,
meaning a symmetrical behavior, as expected.

This means that the closer to the left or right pixels,
the more sharpening effect we get.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Plotting the weights: 𝑚𝑚03 𝑥𝑥

• Assumption:
• Left and right colors are the same

• Single weight:
𝑚𝑚03 𝑥𝑥 = 𝑚𝑚0 𝑥𝑥 + 𝑚𝑚3 𝑥𝑥

Presenter
Presentation Notes
Now let’s do the assumption that left and right colors are the same,
so we can just pick one of them and apply a single weight.

In that case, the shape is simpler…

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Plotting the weights: 𝑚𝑚03′ 𝑥𝑥

• Which can be fitted:
𝑚𝑚03
′ (𝑥𝑥)= 𝑥𝑥(0.8𝑥𝑥 − 0.8)

Presenter
Presentation Notes
…and we could do a fitting for a simpler expression,
that can be executed in only two instructions.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Insight 1

• Why bicubic filtering works so
well for temporal resampling?

• When fractional of the position
is near 0.5:

• Maximum numerical diffusion
error (blurriest)

• Bicubic filtering sharpens the most

Maximum diffusion error
Maximum sharpening

Presenter
Presentation Notes
Looking at bicubic into this degree of detail

allow us to make two insights.

One of the reasons for bicubic filtering to work so well for temporal resampling
is that when the numerical diffusion error is potentially maximum,
bicubic sharpens the most,
which is clear looking at this figure.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Insight 2

• Bicubic can be seen as:
• Directional unsharp mask
• Sharpness dependent on fractional

of position
• Direction dependent on the

fractional of the position

Presenter
Presentation Notes
The second insight
is that bicubic can be seen as a directional unsharp mask,
with the sharpness and direction
dependent on the fractional of the position.

We have handled the sharpness amount but not the direction,
given that we have made the assumption of left and right pixels being the same.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Handling the direction

• We made the assumption of left
and right colors being the same

• When this assumption does not
hold, they are pulled
asymmetrically

Left

Right

Presenter
Presentation Notes
When this assumption does not hold,
the left and right pixels are pulled asymmetrically,
meaning that they have different weights.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Handling the direction

• Looking at relative weights for left and right, we
can observe the following from the fractional 𝑥𝑥:

• If 𝑥𝑥 = 0.25: left = 2.5 × right
• If 𝑥𝑥 = 0.5: left = right
• If 𝑥𝑥 = 0.75: right = 2.5 × left

• Linear?

left

right

𝑥𝑥

𝑥𝑥
0.25

Presenter
Presentation Notes
Let’s see how much the left and right pixels contribute.

For example if the fractional is 0.25,
we can see that the left pixel is 2 times and half bigger than the right one.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Handling the direction

• Looking at relative weights for left and right, we
can observe the following from the fractional 𝑥𝑥:

• If 𝑥𝑥 = 0.25: left = 2.5 × right
• If 𝑥𝑥 = 0.5: left = right
• If 𝑥𝑥 = 0.75: right = 2.5 × left

• Linear?

𝑥𝑥

𝑥𝑥
0.5

left

right

Presenter
Presentation Notes
If the fractional is 0.5, left and right contribute in the same amount.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Handling the direction

• Looking at relative weights for left and right, we
can observe the following from the fractional 𝑥𝑥:

• If 𝑥𝑥 = 0.25: left = 2.5 × right
• If 𝑥𝑥 = 0.5: left = right
• If 𝑥𝑥 = 0.75: right = 2.5 × left

• Linear?

𝑥𝑥

𝑥𝑥
0.75

left

right

Presenter
Presentation Notes
Finally, if we look at fractional 0.75,
the right pixel is 2 times and half bigger than the left one.

From this observations,
it seems like the weights for the left and right pixels
are linear with respect to the fractional of the position.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Handling the direction

• Plotting y = m0(𝑥𝑥)
m0 𝑥𝑥 +m3(𝑥𝑥)

confirmed linearity

• Just calculate blended color with a lerp over the
fractional 𝑥𝑥

• color = lerp(left, right, x)

𝑥𝑥

y

Presenter
Presentation Notes
Plotting the relative weight for the left versus the right pixel,
we confirmed our observations.

By the end of the day,
this means that we can just calculate a blended color as input for our simplified Bicubic filter,
which until this slide didn’t consider directionality.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Summary

• We went from the computationally expensive Mitchell-Netravali
Bicubic equation:

𝑓𝑓 𝑥𝑥 = �
12 − 9𝐵𝐵 − 6𝐶𝐶 𝑥𝑥 3 + −18 + 12𝐵𝐵 + 6𝐶𝐶 𝑥𝑥 2 + 6 − 2𝐵𝐵 , 𝑥𝑥 < 1

−𝐵𝐵 − 6𝐶𝐶 𝑥𝑥 3 + 6𝐵𝐵 + 30𝐶𝐶 𝑥𝑥 2 + −12𝐵𝐵 − 48𝐶𝐶 𝑥𝑥 + (8𝐵𝐵 + 24𝐶𝐶), 1 ≤ 𝑥𝑥 ≤ 2
0, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• To this simple shader snippet:
m03 = x * (0.8 * x - 0.8)
color = lerp(left, right, x)
filteredColor = (m03 * color + 1.0 * historyColor) / (m03 + 1.0)

Presenter
Presentation Notes
So, to summarize our contribution,
we went from the expensive Mitchell-Netravali Bicubic equation…

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Summary

• We went from the computationally expensive Mitchell-Netravali
Bicubic equation:

𝑓𝑓 𝑥𝑥 = �
12 − 9𝐵𝐵 − 6𝐶𝐶 𝑥𝑥 3 + −18 + 12𝐵𝐵 + 6𝐶𝐶 𝑥𝑥 2 + 6 − 2𝐵𝐵 , 𝑥𝑥 < 1

−𝐵𝐵 − 6𝐶𝐶 𝑥𝑥 3 + 6𝐵𝐵 + 30𝐶𝐶 𝑥𝑥 2 + −12𝐵𝐵 − 48𝐶𝐶 𝑥𝑥 + (8𝐵𝐵 + 24𝐶𝐶), 1 ≤ 𝑥𝑥 ≤ 2
0, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• To this simple shader snippet:
m03 = x * (0.8 * x - 0.8)
color = lerp(left, right, x)
filteredColor = (m03 * color + 1.0 * historyColor) / (m03 + 1.0)

Presenter
Presentation Notes
…to this simple shader snippet,
which executes much faster.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Shader Code Statistics

• 9-sample spatial bicubic:
• Vector ALU: 78
• Vector memory: 9
• Estimated cost (cycles): 1868

• 5-sample spatial bicubic:
• Vector ALU: 69
• Vector memory: 4 + 1 already available
• Estimated cost (cycles): 978 (1.91x)

• 1-sample spatio-temporal bicubic:
• Vector ALU: 51
• Vector memory: 1 + 4 already available
• Estimated cost (cycles): 372 (5x)

Presenter
Presentation Notes
To show that, here we have some shader code statistics,
where we can see that the new 1-sample bicubic is
5 times faster than the original 9-sample one.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Results

9-Sample Bicubic Resampling

Presenter
Presentation Notes
In terms of quality,
we noticed that our 1-sample bicubic filter yields sharper results,
and recovers true detail that the regular bicubic filter is not able to.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Results

Our 1-Sample Spatio-Temporal Bicubic Resampling

Presenter
Presentation Notes
[back and forth]

The reason is that standard bicubic filtering sharpens
using data from the blurry history buffer,
where details are already gone.

But our new filter applies the unsharp mask using fresh current frame information.

This has the implication of creating sharper, more detailed images,
at the cost of slightly reintroducing aliasing.

But we have found the tradeoff to generally be favorable to this new technique.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

1x Antialiasing Dynamics

Presenter
Presentation Notes
The next tool is the dynamic subpixel jittering.

But before we go into that, let me show you something [click].

We’re looking at no antialiasing.

But if you look at the vertical edge, it appears antialiased,
specially in comparison with the horizontal one.

But notice that, as soon as we stop the motion, the antialiasing disappears.

So, let’s figure out this mystery.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic Subpixel Jittering

• 1x antialiasing subpixel landing for 0.25px velocity sequence

Presenter
Presentation Notes
Here we have 1x antialiasing, with an object moving at 0.25 pixel steps.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic Subpixel Jittering

• 1x antialiasing subpixel landing for 0.25px velocity sequence

Good
(5 samples)

Presenter
Presentation Notes
Now on the right, I put apart what a pixel sees over time.

We can observe the subpixel positions landed by the object,
which are pretty good:
we got 5 different positions or subsamples.

This is what happened in the movie I just shown.

The object was landing in different and evenly spaced subpixel positions,
and given the high framerate
we were perceiving this as antialiasing.

Our eyes and the panel of the screen
will blend consecutive frames if the framerate is high enough.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic Subpixel Jittering

• 1x antialiasing subpixel landing for 0.5px velocity sequence

Good
(3 samples)

Presenter
Presentation Notes
Now let’s see what happens with 0.5 pixel steps.

It’s still good, we got two unique subpixel features.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic Subpixel Jittering

• 1x antialiasing subpixel landing for 0.75px velocity sequence

Good
(5 samples)

Presenter
Presentation Notes
Then 0.75 steps.

Still pretty good.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic Subpixel Jittering

• 1x antialiasing subpixel landing for 1px velocity sequence

Bad
(1 sample)

Presenter
Presentation Notes
Now 1 pixel steps.

This is where problems appear,
we’re just sampling one subpixel position over time.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time Rendering

Temporal 2x Antialiasing Dynamics

Presenter
Presentation Notes
Now let’s do the same but with temporal 2x [click].

On static images, it looks like regular supersampling 2x.

But in motion, notice how the supersampling quality radically improves…
until it reverts back to no aa.

Then it cycles back to very high quality.

[Note: no temporal filtering (exponential accumulation buffer) is being applied, we are just blending two consecutive frames]

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic Subpixel Jittering

• Temporal 2x antialiasing subpixel landing for 1px velocity sequence

Odd Frame Jitter
Even Frame Jitter

Good
(2 samples)

Presenter
Presentation Notes
Let’s do the same analysis for temporal 2x.

In this case we switch the jitter per frame, marked in blue and orange.

If we look at the subpixel positions visited over time, on the right,
they are quite good for the case of moving in 1 pixel steps…

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic Subpixel Jittering

• 1x antialiasing subpixel landing for 1px velocity sequence

Bad
(1 sample)

Presenter
Presentation Notes
…which let me remind was the case where 1x antialiasing was misbehaving [back and forth].

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic Subpixel Jittering

• Temporal 2x antialiasing subpixel landing for 0.5px velocity sequence

Odd Frame Jitter
Even Frame Jitter

Bad
(1 sample)

Presenter
Presentation Notes
But now let’s see what happens for 0.5 pixel steps.

Notice that we’re always sampling in the same subpixel position over time.

This is why we seen it loses antialiasing at a given speed,
and why it recovered when moving faster.

This is a cyclic problem.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic Subpixel Jittering

• 1x antialiasing subpixel landing for 0.5px velocity sequence

Good
(3 samples)

Presenter
Presentation Notes
But see how this same velocity was creating great results for the 1x case [back and forth].

So, we have a pattern here.

When 1x fails 2x works well.

When 2x fails 1x works great.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic Subpixel Jittering

• Idea: alter subpixel position
on the vertex shader
according to velocity

float2 scale = 0.5f + 0.5f *
cos ((3.141592f / jitterDistance) *

velocity);
svPosition . xy += scale * jitter . xy * svPosition . w;

Presenter
Presentation Notes
So at this point, you can imagine in which consists the dynamic subpixel jittering idea,
which is to alter the subpixel position according to the velocity,
cycling from 1x to 2x
to correct for the aliasing created by those patterns at given speeds.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic Subpixel Jittering

• Idea: alter subpixel position
according to velocity on the
vertex shader:

• Velocity ~0.5px: no jitter

float2 scale = 0.5f + 0.5f *
cos ((3.141592f / jitterDistance) *

velocity);
svPosition . xy += scale * jitter . xy * svPosition . w;

Presenter
Presentation Notes
If the fractional of the velocity is close to 0.5 pixels,
we don’t apply any jitter,
as 1x works great…

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Dynamic Subpixel Jittering

• Idea: alter subpixel position
according to velocity on the
vertex shader:

• Velocity ~0.5px: no jitter
• Velocity ~1px: 2x jitter

float2 scale = 0.5f + 0.5f *
cos ((3.141592f / jitterDistance) *

velocity);
svPosition . xy += scale * jitter . xy * svPosition . w;

Presenter
Presentation Notes
And if it is close to 1 pixel, we apply 2x jitter.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time RenderingDynamic Subpixel Jittering (On vs. Off)

Presenter
Presentation Notes
Let’s see how it looks like in motion.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018
Advances in Real-Time RenderingDynamic Subpixel Jittering (On vs. Halton16)

Presenter
Presentation Notes
This problem also affects Halton sequences of 16 subsamples,
which the standard for many temporal AA implementations,
even if does in a lesser degree.

So let’s see that [click]

Here we were comparing 16 temporal subsamples using Halton, on red,
versus using only 2 at the right places, on green.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Insight

• Sequences of 16x Halton offsets are not necessarily better than 1x
nor 2x jittering in motion

• Optimal sampling scheme depends on velocity

Presenter
Presentation Notes
The take away here
is that more temporal subsamples
not always results in higher quality antialiasing.

The optimal sampling scheme
depends ultimately on the velocity of the sampled object.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Halfres Nearest Velocities [Jimenez2016]

• Idea: precalculate nearest velocity
• Dynamic velocities typically composited with camera ones in a full screen pass
• Composite and downsample to half resolution using compute shader

• Pick closest to camera velocity
• Amortized if async

• Original 10-sample closest velocity reduced to:
• 2 gathers for the velocity (GatherRed and GatherGreen)
• 1 gather for depth

• Half resolution velocities and 8-bit:
• Reduce velocity buffers footprint from 7.91MB to 0.98MB

Presenter
Presentation Notes
For reprojecting the position to previous frame,
a technique called nearest velocity is used,
which is unfortunately, quite expensive.

So, what is this nearest velocity about?

A dice pattern like the one shown here is used to fetch both velocities and depths.

Then the velocity of the pixel
with the closer to camera depth will be chosen for reprojection.

For reasons explained in the previous work,
this looks much better than just using the velocity of the own pixel.

In 2016 we shown how to optimize it by partially precalculating this in half resolution.

But with depths and velocities stored separately,
we still needed 3 gathers per velocity.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Halfres Velocity Packing

• Pack depths and velocities into
UINTs

• Fetch both of them at once
• Reduces Gathers from 3 to 1
• Depths strategically positioned

on the most significant bits

Depth Velocity

10 22

Presenter
Presentation Notes
We can further improve this by packing depth and velocities into a single uint.

This reduces gathers from 3 to a single one.

But we can do better. Notice that depths are strategically positioned on the most significant bits.

[Note: we recommend using a float32 buffer rather than an uint one, and use asfloat and asuint. Gathering on uints will misbehave on some platforms].

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Halfres Velocity Packing

• Selecting closest velocity, do for
each sample:

• closestVelocity = depth1 < depth2?
velocity1 : velocity2;

• Requires a significant amount of
conditional moves (cmov)

Depth Velocity

10 22

Presenter
Presentation Notes
Finding out the closest-to-camera velocity
requires a significant amount of comparisons and conditional moves.

But if depth is stored on the left side of the uint,
we can exploit the fact that floating point values are lexicographically ordered.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Halfres Velocity Packing

• Floating point values are
lexicographically ordered:

• float x, y;
• min(x, y) == asfloat(min(asuint(x),asuint(y))) Depth Velocity

10 22

Presenter
Presentation Notes
This property ensures that
if we compare the integer representation of two floating point values,

the result will be the same as comparing the floating point values themselves.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Halfres Velocity Packing

• Exploit it:
• uint velDepth1, velDepth2;
• nearestVel = DecodeVel(min(velDepth1, velDepth2))

• Just an instruction per velocity
sample

Depth Velocity

10 22

Presenter
Presentation Notes
By placing the depth on the most significant bits of the uint,
we can just calculate the min of the packed uint data
to ensure we get the one with the closest depth and velocity.

They will travel together, requiring no conditional move at all.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Performance on the PlayStation 4

• 1920x1080 input (no temporal upsample)
• T2x: 0.8 – 0.99ms

• 1440x1080 input
• TU2x: 0.75 – 0.94ms
• TU4x: 1.0 – 1.26ms

• 960x1080 input
• TU2x: 0.67 – 0.9ms
• TU4x: 0.95 – 1.2ms

Presenter
Presentation Notes
Here we have some performance metrics on the PlayStation 4,
for different dynamic resolution steps.

The 2x upsampler is close to a 1ms budget,
with the 4x upsampler having a small performance bump.

Given that now temporal AA and upsampling has an even more noticeable image quality impact,
I think this extra resources are well justified.

The game can now render in lower resolutions, and still have great image quality.

[Note: timings on this slide are captured using in game timers, and min filtered over time due to game timer’s variance]

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Summary

• Dynamic resolution + temporal upsampling
• Temporal upsampling + Spatial reconstruction = 4x upsample
• Analysis of the subpixel jittering
• New temporal AA tools

Presenter
Presentation Notes
So to finalize,
we have shown how to efficiently combine dynamic resolution with temporal upsampling
and how to combine temporal upsampling with spatial reconstruction for a net 4x upsample.

We also have shown an analysis of the subpixel jittering effectiveness under motion,
and some new tools to improve temporal antialiasing and upsampling.

Most of these ideas have successfully shipped in Infinite Warfare and World War 2,
and we are working towards deploying the rest in the next games.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

Q&A - Acknowledgements

• Angelo Pesce

• Adam Micciulla

• Akimitsu Hogge

• Christer Ericson

• Jennifer Velazquez

• Michael Vance

• Wade Brainerd

Special thanks to SIGGRAPH Advances on Real-Time Rendering organizer Natasha
Tatarchuk and Digital Dragons track chair Michal Drobot

Presenter
Presentation Notes
So, this finishes the talk, I hope you like it, and thank you for the attention.

Advances in Real-Time Rendering, SIGGRAPH 2017 | Programming and Technology Track, Digital Dragons 2018

References

• [Berghoff2016] Tobias Berghoff, Tim Dann, et al. PlayStation®4 Pro High Resolution
Technologies, Sony Interactive Entertainment, PlayStation®4 SDK

• [Jimenez2012] SMAA: Enhanced Subpixel Morphological Antialiasing
• [Jimenez2016] Filmic SMAA: Sharp Morphological and Temporal Antialiasing
• [Lottes2011] Temporal Supersampling (blog post, no longer available)
• [Phelippeau2009] Green Edge Directed Demosaicing Algorithm
• [Valient2014] Taking Killzone: Shadow Fall Image Quality Into the Next Generation

	Slide Number 1
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Reprojection Ghosting
	Neighborhood Clamp [Lottes2011]
	Filmic SMAA
	Dynamic Resolution and Infrastructure
	Intro
	Intro
	Intro
	Intro
	Filmic SMAA TU2X�Dynamic AA 2X
	Filmic SMAA TU2x Highlights
	Big Picture
	Big Picture
	Subpixel Jittering
	Virtual Bilinear Downsample
	Virtual Bilinear Downsample
	Virtual Bilinear Downsample
	Virtual Bilinear Downsample
	Dynamic AA Algorithm
	Dynamic AA Algorithm
	Dynamic AA Algorithm
	Dynamic AA Algorithm
	Dynamic AA Algorithm
	Filmic SMAA TU2x Highlights
	Filmic SMAA TU4X�Dynamic AA 4X
	Filmic SMAA TU4x
	Filmic SMAA TU4x
	[Berghoff2016] Differential Blend Recap
	[Berghoff2016] Differential Blend Recap
	[Berghoff2016] Differential Blend Recap
	[Berghoff2016] Differential Blend Recap
	Temporal Checkerboard
	Temporal Checkerboard
	Temporal Checkerboard
	[Berghoff2016] Checkerboard
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	4x Upsampler
	Dynamic Resolution
	2x Upsampler
	4x Upsampler
	Results
	Results
	Results
	Results
	New Temporal Toolset
	1-Sample Spatio-Temporal Bicubic Resampling Intro
	1-Sample Spatio-Temporal Bicubic Resampling Intro
	Slide Number 105
	5-Sample Bicubic Resampling [Jimenez2016]
	5-Sample Bicubic Resampling [Jimenez2016]
	Bicubic Resampling
	Spatio-Temporal Optimization
	Spatio-Temporal Optimization
	Spatio-Temporal Optimization
	Computation Optimization
	Computation Optimization
	Computation Optimization
	Computation Optimization
	Computation Optimization
	Computation Optimization
	Computation Optimization
	Computation Optimization
	Plotting the weights (left pixel): 𝑚 0
	Plotting the weights (right pixel): 𝑚 𝟑
	Plotting the weights: 𝑚 03 𝑥
	Plotting the weights: 𝑚 03 ′ 𝑥
	Insight 1
	Insight 2
	Handling the direction
	Handling the direction
	Handling the direction
	Handling the direction
	Handling the direction
	Summary
	Summary
	Shader Code Statistics
	Results
	Results
	Slide Number 138
	Dynamic Subpixel Jittering
	Dynamic Subpixel Jittering
	Dynamic Subpixel Jittering
	Dynamic Subpixel Jittering
	Dynamic Subpixel Jittering
	Slide Number 144
	Dynamic Subpixel Jittering
	Dynamic Subpixel Jittering
	Dynamic Subpixel Jittering
	Dynamic Subpixel Jittering
	Dynamic Subpixel Jittering
	Dynamic Subpixel Jittering
	Dynamic Subpixel Jittering
	Slide Number 153
	Slide Number 154
	Insight
	Halfres Nearest Velocities [Jimenez2016]
	Halfres Velocity Packing
	Halfres Velocity Packing
	Halfres Velocity Packing
	Halfres Velocity Packing
	Performance on the PlayStation 4
	Summary
	Q&A - Acknowledgements
	References

