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Fig. 1. In-game render using an IrradZ HHD lightmap, with indirect diffuse lighting overlaid on the left.

Fig. 2. In-game render without (left) and with (right) a per-pixel AO cone multiply for indirect lighting from
a volumetric SH grid, where the cone multiply is done by solving to the HLSH model and then evaluating.
Indirect diffuse lighting (without albedo) is shown in a cut-out. Evaluating SH directly leads to leakage of
light from behind the surface hemisphere on normal-mapped normals; the cone multiply eliminates this and
grounds the directional AO in a believable manner.

Precomputed lighting is crucial in many interactive applications, which commonly encode global illumination
in compact lightmaps or volumetric data structures. For precomputed lighting to interact with high-frequency
geometric detail encoded in normal maps, each surface must be able to evaluate irradiance in any direction in
its hemisphere, which requires that the precomputed lighting be represented using directional lighting models.
We present two new highly compact hemispherical lighting models, each of which can be efficiently solved to
and blended in an advancement over the commonly-used AHD model. We show how these models can be
encoded to maintain exact reconstruction of irradiance in the vertex normal/local Z ("IrradZ"), providing a
framework for solving to IrradZ models from spherical harmonics (SH) using hemispherical least-squares and
correcting prior work where spherical methods have led to unnecessarily high error. Finally, we introduce an
efficient method for hemisphere multiplies of quadratic SH and use it to inexpensively apply hemispherical or
cone occlusion to volumetric lighting, mitigating light leakage for normal-mapped surfaces and significantly
improving the appearance of runtime ambient occlusion.

CCS Concepts: • Computing methodologies→ Graphics systems and interfaces.

Additional Key Words and Phrases: lightmaps, global illumination, spherical harmonics, hemispherical lighting
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1 INTRODUCTION
Global illumination is a crucial yet computationally expensive component of lighting. For interac-
tive applications such as games, which operate under restrictive performance budgets on often
highly constrained hardware, precomputed lighting is the most efficient way of simulating global
illumination effects at runtime, with time-proven techniques such as lightmaps [Carmack et al.
1996] still in use today.

The vast majority of lighting in interactive applications is for surfaces, which at each point
have a hemisphere of incident radiance around the surface normal. Commonly, these surfaces are
augmented by normal maps [Blinn 1978], where high frequency geometric detail is approximated
by a texture. For accurate lighting reconstruction from these varying normals, the lighting model
must therefore encode a hemisphere of irradiance. The irradiance for static geometry is commonly
represented by directional lightmap formats [Chen 2008; McTaggart 2004; Sloan and Silvennoinen
2018], which use a small set of parameters to efficiently represent low-frequency lighting data.
The IrradZ lightmap parameterization [Sloan and Silvennoinen 2018], which encodes vertex-

normal-exact hemispherical irradiance in a minimal set of parameters, is highly appealing as a
compact directional lightmap format and has been shipped in multiple games. Prior work used
Ambient and Highlight Direction (AHD) [Carmack et al. 1999; Iwanicki 2013] as the corresponding
lighting model; as our first contribution, we show how the same parameterization can be used to
represent multiple other models, such as the novel Hemisphere and Highlight Direction (HHD)
model and the linear spherical harmonic-derived HLSH model, and compare the effect of the choice
of model on reconstruction accuracy, interpolation properties, and physical reasoning.

In prior work, encoding the AHD lighting model has often been incorrectly done with consider-
ation to spherical error [Iwanicki 2013; Sloan and Silvennoinen 2018], which is sub-optimal for
hemispherical reconstruction. We present a framework for hemispherical encoding from spherical
harmonics (SH), which exploits the fact that error in the lower hemisphere can be disregarded to
provide more accurate reconstruction over the upper hemisphere. This framework requires only a
minor increase in computation and no extra storage over spherical encoding, and is fully compati-
ble with maintaining the IrradZ constraint for exact irradiance reconstruction in the hemisphere
normal.

Hemispherical reasoning and encoding is also applicable at runtime, such as for lighting dynamic
objects. Surface lighting data is often stored volumetrically in (usually quadratic order) spherical
harmonics [Ramamoorthi and Hanrahan 2001], which are sampled at the shading location and
then evaluated in the direction of the shading normal. When normal mapping is used without
hemispherical occlusion this results in light leakage; incident radiance on the hemisphere below
the geometric normal is entirely occluded by the surface and so should have no contribution to
normal mapped normals, but will leak through if radiance below the hemisphere is not zeroed
out. Using our hemispherical encoding frameworks for HHD and HLSH and a novel method for
oriented quadratic-to-linear spherical harmonic hemisphere multiplies, we present methods to
efficiently encode at runtime the hemispherical irradiance for evaluation with normal-mapped
geometry. While approximate, these methods are substantially more accurate than not accounting
for hemispherical occlusion and can also be applied per-vertex as a level of detail scheme. We
further extend these methods to approximate occlusion by an arbitrary visibility cone such as is
commonly computed by ambient occlusion algorithms [Jimenez et al. 2016]; rather than requiring
the use of a separate ambient occlusion term and bent normals, this directly multiplies the incident
lighting in an efficient manner, producing high quality results.
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2 BACKGROUND AND PRIORWORK
2.1 Hemispherical Lighting Models
There have beenmany [Chen 2008; Gautron et al. 2004; Habel et al. 2008; Hooker 2016; Iwanicki 2013;
Iwanicki and Sloan 2017; Martin 2011; McTaggart 2004; Neubelt and Pettineo 2015; Silvennoinen
and Sloan 2021] models used to encode hemispherical lighting data in lightmaps for real-time
applications, with different accuracy, computation, and storage tradeoffs. At the higher-quality end
of the spectrum representations such as multiple spherical Gaussian lobes [Neubelt and Pettineo
2015] have been used; these encode radiance over the hemisphere in a way that enables both
specular and diffuse reconstruction; but are expensive to evaluate and require a high dynamic range
color for each lobe (of which there are commonly between nine and twelve). On the lower quality
end exist more inexpensive models such as Ambient and Highlight Direction (AHD) [Carmack
et al. 1999; Iwanicki 2013], low-order spherical harmonics (SH), and SH’s hemispherical variants
HSH [Gautron et al. 2004] and the H-Basis [Habel and Wimmer 2010; Ishmukhametov 2011]. These
models trade accuracy and radiance reconstruction for evaluation efficiency and compact encoding
in a way that is highly attractive for constrained hardware, and are our particular focus in this
paper.

2.1.1 Ambient and Highlight Direction (AHD). Ambient and Highlight Direction [Carmack et al.
1999; Iwanicki 2013] is a simple, commonly used directional lighting model. It represents irradiance
through the combination of an ambient light with intensity 𝐶𝑎 plus a directional light with color
𝐶𝑑 and tangent-space direction d. Reconstruction with AHD is

𝐼 (n) = 𝐶𝑎 +max(0, n · d)𝐶𝑑 , (1)

where 𝐼 (n) is the irradiance and n is the normal being evaluated.
AHD is of particular interest due to being compatible with the IrradZ encoding [Sloan and

Silvennoinen 2018], which uses only a single HDR color and three low-precision luminance values
for each lightmap texel, exactly preserves irradiance in the vertex normal ("IrradZ"), and interpolates
in a well-behaved manner.

2.1.2 Spherical Harmonics. Spherical harmonics [Ramamoorthi and Hanrahan 2001] are a set
of spherical orthonormal basis functions that can be used to encode spherical signals, and are
commonly used in rendering to represent radiance or irradiance signals. Increasingly high order
spherical harmonics represent increasingly high frequency information; typically, quadratic spheri-
cal harmonics (with nine basis functions) are used to represent spherical irradiance, with linear
spherical harmonics (four basis functions) sometimes used as an inexpensive alternative. The linear
spherical harmonics consist of a constant term and a scaled function corresponding to each of the
cardinal axes −𝑦, 𝑧,−𝑥 :

Y(𝑥,𝑦, 𝑧) =
[
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𝜋
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. (2)

The quadratic spherical harmonics add an additional five basis functions:
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. (3)

Quadratic spherical harmonics can represent irradiance functions with an average error of less
than 3% [Ramamoorthi and Hanrahan 2001], and so are often used as an intermediate representation
in lightmap baking or in volumetric structures for runtime lighting. Spherical harmonics also have
the property that convolutions with rotationally symmetric functions (which project into the
zonal harmonics) can be done through an element-wise product; for example, to convolve with
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a normalized cosine lobe (thereby converting SH coefficients representing radiance to represent
irradiance) one simply multiplies the source coefficients by the per-band scale factors [1, 23 ,

1
4 , . . .].

2.1.3 Hemispherical Spherical Harmonics. Spherical harmonics are not orthonormal over the
hemisphere. Shifted basis functions such as the HSH [Gautron et al. 2004] and H-Basis [Habel and
Wimmer 2010] address this issue by modifying the spherical harmonic basis functions in varying
ways to produce bases that are orthonormal over the hemisphere; this enables simpler least-squares
projection of hemispherical signals such as hemispherical radiance. Considering only the first
four basis functions and disregarding coefficient scales, the H-Basis differs from linear SH only in
replacing the third basis function 𝑧 with 2𝑧 − 1.

Orthonormality is not necessarily helpful when encoding irradiance signals over the hemisphere,
since the radiance to irradiance convolution must happen in the spherical domain; therefore, since
the first four basis functions of HSH and the H-Basis span the same space as linear SH, they
represent the same data and, when excluding later basis functions, can be considered equivalent
for the purposes of directional lighting reconstruction.

2.1.4 Modified H-Basis. The modified H-Basis [Ishmukhametov 2011] drops the orthonormality
constraint in favor of encoding the irradiance in the geometric normal exactly in its constant basis
function, with the third basis function becoming (again disregarding scale factors) 1 − 𝑧. While
this is again simply a variant of linear SH (i.e. to convert coefficients for [1, 𝑧] to coefficients for
[1, 1 − 𝑧] you simply negate the second coefficient and add the first to it), it is interesting as an
early example of encoding the scalar irradiance value directly into a lightmap and having the other
basis functions augment it.

2.2 The IrradZ Parameterization
The most appearance-pertinent important property of an indirect irradiance lightmap is its recon-
struction of irradiance in local Z ("IrradZ"), since the typical distribution of normals in a normal
map is biased towards the hemisphere center. While any lighting model can be encoded such
that the irradiance is exact at texel centers, reconstruction of interpolated coefficients (such as
from linear texture filtering) is not always well behaved. For the AHD model (Section 2.1.1), for
example, direct, independent interpolation of the d and 𝐶𝑑 coefficients can result in artifacts if the
precomputed lighting changes quickly; the parameters are coupled in the evaluation and so fully
correct interpolation requires interpolating the augmented value 𝐶𝑑d, which, if stored in textures,
incurs a significantly higher memory and bandwidth cost. The IrradZ parameterization [Sloan
and Silvennoinen 2018], which consists of the scalar irradiance 𝐼𝑧 , the same highlight direction d,
and a𝑤𝑎 ∈ [0, 1] "ambient ratio", improves on this issue by directly storing and interpolating the
irradiance in local Z, ensuring reconstruction is exact for hemisphere-aligned normals and greatly
mitigating interpolation artifacts while simultaneously reducing the encoded memory footprint.

Conversion from the IrradZ encoding to AHD’s 𝐶𝑎 , 𝐶𝑑 , and d coefficients is given by

𝐶𝑎 = 𝐼𝑧𝑤𝑎, (4)

𝐶𝑑 =
𝐼𝑧 (1 −𝑤𝑎)

d𝑧
, (5)

where d𝑧 is the z (normal) component of the tangent-space highlight direction d. This requires a
single high-precision color 𝐼𝑧 (compared to two for 𝐶𝑎 and 𝐶𝑑 ), the same low-precision tangent
space highlight direction d (in practice represented using hemispherical octahedral encoding [Meyer
et al. 2010]), and a low-precision ambient ratio 𝑤𝑎 . As a further optimization, d and 𝑤𝑎 can be
shared between all color channels, saving six coefficients while still preserving color accuracy for
Z-aligned normals. When using block compression, luminance IrradZ requires 2.5 bytes per texel.
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(a) Hemisphere Light (b) Directional Light

(c) Combined Indirect Diffuse (d) Total Lit

Fig. 3. The components of the HHD lighting model. The hemisphere light and directional light are summed
together to produce the indirect diffuse.

3 EXTENDING IRRADZ: ALTERNATIVE LIGHTING MODELS
The original IrradZ paper [Sloan and Silvennoinen 2018] used only the AHD lighting model for
reconstruction. While AHD is simple and efficient, it does not represent a physically plausible
lighting setup over the hemisphere, since the irradiance for a constant intensity light over a
hemisphere is given by a hemisphere light, not a constant ambient term. Additionally, AHD is a
nonlinear model that requires a nonlinear solver for encoding, limiting its flexibility for runtime
encoding and blending. We present two new models that make different tradeoffs; the first, HHD
(Section 3.1), simply replaces the ambient term in AHD with a physically plausible hemisphere
light, while the second, HLSH (Section 3.2), is a linear model.

3.1 Hemisphere and Highlight Direction (HHD)
HHD (Figure 3) is a simple tweak on AHD that replaces the ambient term with a hemisphere in the
vertex normal n𝑣 . This accounts for occlusion by the surface plane, providing directional variation
even when the lighting is relatively flat and enabling exact reconstruction of a wider range of
analytic lighting setups.1 The irradiance from a unit-intensity hemisphere light with hemisphere
normal n𝑣 is 1

2 (n · n𝑣 + 1); reconstruction with HHD is therefore

𝐼 (n) = (n𝑣 · n) + 1
2

𝐶𝑎 +max(0, n · d)𝐶𝑑 . (6)

In tangent space, n𝑣 · n is n𝑧 , and dividing by two is a free modifier on most GPUs, so the cost of
evaluating a hemisphere is minimal.

1HHD can exactly represent any ambient-plus-directional lighting setup on a surface plane; AHD can represent hemispherical
lighting only when either𝐶𝑎 is zero or d is aligned with the vertex normal.
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3.1.1 Hemisphere Only. For low-end platforms, using a scalar lightmap that is interpreted as a
hemisphere allows for some normal variation while reducing storage and shader costs.

3.1.2 Direct Solve from Linear Spherical Harmonics. One interesting property of HHD is that,
since it represents a physically plausible hemispherical lighting model and has four degrees of
freedom (𝐶𝑎 , 𝐶𝑑d𝑥 , 𝐶𝑑d𝑦 , and 𝐶𝑑d𝑧), HHD coefficients can be directly inferred from linear SH
(i.e. by reasoning what HHD setup would produce the linear SH coefficients). This is particularly
useful for runtime/GPU solves (Section 3.4) and blending (Figure 4). The tangent-space linear SH
coefficients 𝐿𝑠ℎ = [𝑙0, 𝑙−11 , 𝑙01 , 𝑙

1
1 ] for HHD are

𝐿𝑠ℎ = 𝐶𝑎
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We simplify the inverse mapping by introducing a scaled basis b, where

[b𝑐 , b𝑥 , b𝑦, b𝑧] =
2
√
𝜋
[𝑙0,−

1
√
3
𝑙11 ,−

1
√
3
𝑙−11 ,

1
√
3
𝑙01 ] . (8)

The HHD coefficients have closed forms in terms of b:

𝐶𝑎 =
(2b𝑐 − 𝐼𝑧) −

√︃
(2b𝑐 − 𝐼𝑧)2 − 3(b2𝑐 − ∥b𝑥𝑦𝑧 ∥2)

3
, (9)

𝐶𝑑 = ∥ [b𝑥 , b𝑦, b𝑧] −𝐶𝑎n∥, (10)

d =
[b𝑥 , b𝑦, b𝑧] −𝐶𝑎n

𝐶𝑑

. (11)

A full derivation is provided in Appendix C. Note that this technique requires the source linear
SH to represent hemispherical data (i.e. that, in tangent space, the 𝐼𝑧 = 𝐶𝑎 + 𝐶𝑑d𝑧 coefficient is
given by 2√

3𝜋
𝑙01 ); if this is not the case, and data from higher-order bands is available, a hemisphere

multiply (such as that described in Section 5.1) should be employed before the solve.
For lighting environments with only moderate energy in higher SH bands, using only linear

SH to encode HHD can produce results very similar to a full nonlinear solve (Section 4), with an
observed average increase in RMSE of less than 10%.

3.2 IrradZ Hemispherical Linear SH (HLSH)
Those same 𝐶𝑎 , 𝐶𝑑 , and d parameters can be interpreted in a manner similar to linear spherical
harmonics, with reconstruction given by

𝐼 (n) = 𝐶𝑎 + (n · d)𝐶𝑑 (12)
= 𝐼𝑧n𝑧 +𝐶𝑎 (1 − n𝑧) + 𝑐𝑥n𝑥 + 𝑐𝑦n𝑦, (13)

where 𝐶𝑎 = 𝐼𝑧𝑤𝑎 , 𝑐𝑥 = d𝑥𝐶𝑑 , and 𝑐𝑦 = d𝑦𝐶𝑑 . 𝐼𝑧 and d are the IrradZ encoding parameters; this also
uses the identity 𝐶𝑑 =

𝐼𝑧 (1−𝑤𝑎 )
d𝑧

from Equation 5. HLSH therefore forms a linear basis

HLSH(𝑥,𝑦, 𝑧) = (𝑧, 1 − 𝑧, 𝑥,𝑦) (14)

with coefficients given by ℎ = [𝐼𝑧,𝐶𝑎, 𝑐𝑥 , 𝑐𝑦].
Unlike AHD and HHD, HLSH can be solved to analytically from any linear basis (Section 3.2.2).

Due to its linearity, it can also be trivially blended by averaging the coefficients of ℎ; equivalently,
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Fig. 4. The result of blending two HHD lightmaps. Previous work [Sloan and Silvennoinen 2020] (top) naively
blended IrradZ lightmap values by performing luminance-weighted sums of d and𝑤𝑎 , which leads to a lack
of contrast when blending diverging highlight directions. HHD, in combination with the direct solve from
linear SH presented in Section 3.1.2, offers a much higher quality option: project to linear SH, blend there, and
then solve back to HHD. Doing so correctly moves energy from the directional light (left) into the hemisphere
light (center) and keeps the highlight direction closer to the horizon, preserving highlight contrast while still
maintaining the same combined diffuse irradiance (right) for Z-aligned normals.

in AHD parameter form 𝐶𝑎 is averaged while d and 𝐶𝑑 are given by the normalized direction and
length, respectively, of

∑
𝑖 𝐶𝑑𝑖d𝑖 .

HLSH is closely related to linear spherical harmonics (differing only by coefficient scale factors),
with the projection given by 

𝑙0

𝑙−11

𝑙01

𝑙11


=


2
√
𝜋𝐶𝑎

−2
√︁

𝜋
3 𝑐𝑦

2
√︁

𝜋
3 (𝐼𝑧 −𝐶𝑎)
−2

√︁
𝜋
3 𝑐𝑥


. (15)

HLSH is also related to the orthonormal HSH [Gautron et al. 2004] and H-Basis [Habel and Wim-
mer 2010] families of basis functions and the modified H-Basis [Ishmukhametov 2011]; compared
to the latter, HLSH differs only by replacing the constant basis function with 𝑧. When considering
only the variants with four parameters, these models can be exactly converted between and provide
identical reconstruction accuracy; this also means that any of those models can be converted into
HLSH and then encoded using the IrradZ parameterization.
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3.2.1 IrradZ Parameters. The IrradZ encoding parameters are given from HLSH coefficients by

𝑤𝑎 =
𝐶𝑎

𝐼𝑧
, (16)

d𝑧 =

(
𝑐2𝑥 + 𝑐2𝑦

(𝐼𝑧 −𝐶𝑎)2
+ 1

)− 1
2

, (17)[
d𝑥
d𝑦

]
=

d𝑧
𝐼𝑧 −𝐶𝑎

[
𝑐𝑥
𝑐𝑦

]
. (18)

3.2.2 IrradZ-Constrained Direct Solve. HLSH is a linear basis with four coefficients. To preserve
the exact irradiance in the hemisphere normal (the IrradZ constraint) in a least-squares solve, we
treat the coefficient 𝐼𝑧 , corresponding to the 𝑧 basis function, as fixed. To solve for the remaining
coefficients 𝑏 = [𝐶𝑎, 𝑐𝑥 , 𝑐𝑦], we want to minimize the reconstruction error over the hemisphere Ω+

𝐸 =

∫
Ω+

(𝐵(𝜔) · 𝑏 + 𝐼𝑧𝜔𝑧 − Y(𝜔) · 𝑖)2 d𝜔, (19)

where 𝑖 is the target irradiance, 𝐵(𝜔) = (1 − 𝜔𝑧, 𝜔𝑥 , 𝜔𝑦), the remaining HLSH basis functions, and
Y are the SH basis functions such that Y(𝜔) · 𝑖 gives the target irradiance in the direction 𝜔 .

Differentiating and setting the derivatives to zero results in

0 = G𝐵𝑏 + 𝐼𝑧

(∫
Ω
𝐵(𝜔)𝜔𝑧d𝜔

)
− G𝐵𝑌 𝑖, (20)

where G𝐵 =
∫
Ω+ 𝐵(𝜔)𝐵(𝜔)𝑇 d𝜔 = 2𝜋

3 and G𝐵𝑌 =
∫
Ω+ 𝐵(𝜔)Y(𝜔)𝑇 d𝜔 . If the source basis is quadratic

spherical harmonics, G𝐵𝑌 is given by
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Solving for 𝑏 yields 
𝐶𝑎

𝑐𝑥
𝑐𝑦

 =
3
2𝜋

©«G𝐵𝑌 𝑖 − 𝐼𝑧


𝜋
3
0
0

ª®¬ . (22)

3.3 Comparing AHD, HHD, and Hemispherical Linear SH
AHD, HHD, and HLSH are all compact and efficient representations with very similar evalua-
tion, and, when properly solved for, all can produce fairly accurate results, with each having
lighting environments it’s best suited to (Figure 5); HLSH generally provides the most accurate
reconstruction for smooth lighting, while AHD and HHD are more accurate for highly directional
environments or those with high amounts of baked light. There are additional considerations: for
example, unlike AHD, HHD exactly represents a physical, analytic hemispherical lighting setup
(that of a constant ambient light occluded by the surface hemisphere plus a directional light), which
means it can round-trip exactly with hemispherical lighting in linear spherical harmonics in a
hemispherical-error-minimizing manner (Section 3.1.2). This carries advantages for both runtime
solves or blending (Figure 4) and in evaluation, where different material BRDFs can be computed
analytically or tabulated for each of the hemisphere and directional light. Similarly, HLSH, being a
fully linear basis, can be solved to analytically from spherical harmonics (Section 3.2.2) without
requiring a search for the direction vector (Section 4) or separate hemisphere multiply (Section 5),

8



Hemispherical Lighting Insights

Reference AHD HHD HLSH

Vienna Garage RMSE = 0.0865 RMSE = 0.0567 RMSE = 0.1333

Hallstatt RMSE = 0.0866 RMSE = 0.1003 RMSE = 0.0560

Linz RMSE = 0.0102 RMSE = 0.0136 RMSE = 0.0143

Metro Vienna RMSE = 0.0220 RMSE = 0.0618 RMSE = 0.0394

Pisa RMSE = 0.0686 RMSE = 0.0676 RMSE = 0.0756

Wells RMSE = 0.0857 RMSE = 0.0933 RMSE = 0.0707

Fig. 5. Irradiance reconstruction on a range of HDR lighting environments [Vogl 2010] clipped to the hemi-
sphere using luminance AHD, HHD, and HLSH (Section 2.2); the reference is numerical integration of the
input environment map. Each IrradZ format has the lowest error for some environments; there is no single
best choice. For lightmaps, where the normals are usually oriented towards the hemisphere normal, the visual
difference is usually slight, with AHD and HHD having higher contrast; however, the runtime solves for HHD
and HLSH make them an attractive choice for some use cases.
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and can be trivially blended, but has no physical analogue and cannot represent high-frequency
directional lighting. In practice, HHD provides the best balance of error and runtime properties for
our production lightmaps, but different use cases may see different conclusions.

3.4 Directional Encodings as a Level of Detail
HHD and HLSH can also be used as a lighting level-of-detail scheme for non-lightmapped geometry,
where the coefficients are generated from volumetric SH in the vertex shader and then evaluated in
the pixel shader. This is particularly useful for lower-end platforms, since fetching and evaluating
high-order spherical harmonics in pixel shaders can be expensive (particularly when incorporating
a hemisphere or cone multiply), while evaluating these compact representations is very inexpensive.

To compute the coefficients, we use either the solve from linear SH for HHD (Section 3.1.2) after
a quadratic-to-linear hemisphere multiply (Section 5.1) or the direct solve to irradiance-convolved
HLSH (Section 5.2); in both cases, we perform the solve in the global frame for luminance SH after
computing the RGB irradiance in the vertex normal direction. As vertex shader outputs, we compute
𝐼𝑧 and d′ = Luminance

(
𝐶𝑑

𝐼𝑧

)
d; then, in the pixel shader, we reconstruct 𝐶𝑎 = 𝐼𝑧 (1 − n𝑣 · d′).

This interpolation scheme minimizes the number of interpolants, preserves the tangent-space
𝐼𝑧 as an invariant, and pushes any cancellation in the direction vector into the ambient term,
which mimics the behavior in the solves. A slightly more accurate option would be to interpolate
Luminance(𝐼𝑧) × d′ rather than d′, dividing again in the pixel shader; in practice, we have seen
little visual difference and prefer the reduced pixel shader cost.

4 ENCODING IRRADZ FROM SPHERICAL HARMONICS
The AHD, HHD, and HLSH lighting models are used to represent directional irradiance, which
means that directional irradiance data is required to encode them. Dense sampling of irradiance
over the hemisphere during a bake generally incurs infeasible memory usage and computational
cost; instead, as in prior work [Ishmukhametov 2011; Sloan and Silvennoinen 2018], we encode to
(quadratic) spherical harmonics, perform the closed-form irradiance convolution, and then solve
for the encoded IrradZ coefficients that best represent the spherical harmonic irradiance.

Past encoding methods for AHD [Iwanicki 2013; Sloan and Silvennoinen 2018] have used spheri-
cal error or taken the optimal linear direction from the spherical harmonic as the highlight direction
d, both of which reduce reconstruction accuracy (Figure 6); the optimal linear direction’s 𝑙01 co-
efficient is polluted by the hemisphere light that necessarily results from integration of SH over
the hemisphere, significantly increasing error, and using the optimal linear direction also neglects
energy in higher bands (which can cause the optimal d to vary in both 𝜙 and 𝜃 ).

In this section, we set out a framework for nonlinear solves, applicable to both AHD and HHD,2
that correctly account for hemispherical error and search for the optimal highlight direction on the
hemisphere. In our solves, we enforce the IrradZ constraint, which, in addition to ensuring exact
reconstruction for local Z, biases the error distribution to be lower around the hemisphere normal,
better matching the typical distribution of normals in a normal map. The IrradZ value used in the
constraint is preferably given by sampled scalar irradiance, but computing it from the quadratic SH
is a reasonable alternative.
It is important to note that, since we are encoding for evaluation with normal maps, we are

inherently encoding a nonphysical quantity for which there is no ground truth. Normal maps ap-
proximate local geometric detail in a way that, for physically accurate results, must be incorporated
into the path tracing as actual geometric detail (for example, to model inter-reflection between
opposing normals), which is decidedly non-trivial. In prior work, Schüssler et al. [2017] proposed
2HLSH may be solved to directly using the method described in Section 3.2.2
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(a) Reference (lightmap encoded us-
ing quadratic SH)

RGB RMSE: 3.795, 4.874, 5.159
(b) RGB AHD using the optimal lin-
ear SH direction and 𝑤𝑎 from the
spherical Gram.

RGB RMSE: 1.514, 1.805, 1.597
(c) RGB AHD using a searched-for
direction and 𝑤𝑎 from the hemi-
spherical Gram.

Fig. 6. In prior work [Iwanicki 2013; Sloan and Silvennoinen 2018], the optimal linear direction and spher-
ical error were used for encoding AHD parameters. This yields significantly higher error compared to the
hemispherical solve; the highlight direction is too close to the hemisphere normal and the ambient weight is
too low, so grazing normals are excessively darkened. By comparison, using the correct hemispherical solve
(Section 4) produces a much closer result to the target quadratic SH. Images are lightmaps encoded using
The Baking Lab [Pettineo 2024].

a model for path tracing normal maps in a well-defined and energy-conserving way; however, it
is not clear how that model could be applied when considering the outgoing radiance from an
arbitrary, runtime-applied normal map. We instead restrict ourselves to a simpler problem: we
consider the incident radiance on a hemisphere surrounding the geometric normal as received
during the bake and then aim to encode the irradiance that an arbitrary normal would receive from
that lighting environment, independent of any interreflection. In effect, this means that the SH
encoded in the bake is our reference, and that, save using higher-order SH that have increasingly
little irradiance contribution, there is no other ground truth.

4.1 Hemispherical Least-Squares Encoding
Encoding irradiance in hemispherical lighting models usually entails taking source spherical
harmonic radiance data produced in an offline bake, performing an irradiance convolution, and
then encoding to the coefficients of the lighting model of choice. Often neglected is the fact that
when encoding irradiance to be evaluated over the hemisphere we must take care to minimize
reconstruction error over only the hemisphere, rather than the entire sphere; disregarding error in
the lower hemisphere (knowing those directions will never be sampled) often significantly decreases
error for the upper hemisphere.3 The L2 error over the hemisphere Ω+ for the SH representation of

3Note that when performing the cosine convolution for irradiance it is important that the lower hemisphere remain zero
(i.e. not discarded), since otherwise invalid data will be included in the convolution; hemispherical error should only be
used after the convolution.
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two functions 𝐴(𝜔) = 𝑎 · Y(𝜔) and 𝐵(𝜔) = 𝑏 · Y(𝜔) is given by

𝐸 =

∫
Ω+

(𝑎 · Y(𝜔) − 𝑏 · Y(𝜔))2 d𝜔 (23)

=

∫
Ω+

((𝑎 − 𝑏) · Y(𝜔))2 d𝜔, (24)

where Y(𝜔) is the vector of SH basis functions evaluated in the direction 𝜔 .
To simplify the error integral, we use the Gram matrix G =

∫
Ω+ 𝐴(𝜔)𝐵(𝜔)𝑇 d𝜔 ; given that∫ (

𝑎 · 𝐴(𝑠)
) (
𝑏 · 𝐵(𝑠)

)
d𝑠 = 𝑎𝑇 G𝑏, (25)

∴ 𝐸 = (𝑎 − 𝑏)𝑇 G (𝑎 − 𝑏) . (26)

In this general form, solving for 𝑏 yields the standard least-squares solution 𝑏 = G−1𝑎.
The Gram matrix can be computed for various basis functions and integration domains; G for

quadratic spherical harmonics over the hemisphere is given in Appendix B, and over the sphere is I.

4.2 Nonlinear Solves for IrradZ AHD and HHD
The spherical harmonic representation 𝐿𝑠ℎ of an IrradZ AHD or HHD function is

𝐿𝑠ℎ = 𝐼𝑧

(
𝑤𝑎sh𝑎𝑚𝑏 +

𝜋 (1 −𝑤𝑎)
d𝑧

sh𝑑𝑖𝑟
)

= 𝐶𝑎sh𝑎𝑚𝑏 + 𝜋𝐶𝑑𝑠ℎ𝑑𝑖𝑟 .

(27)

𝐼𝑧 is the irradiance in the hemisphere normal
∫
Ω+ R(𝜔) cos𝜔𝜋 d𝜔 . When encoding from a hemi-

spherical radiance signal projected into spherical harmonics, 𝐼𝑧 is equivalently given by

𝐼 (n) = 2
√
3𝜋

𝑙1 · n𝑠ℎ, (28)

where n𝑠ℎ = [−n𝑦, n𝑧,−n𝑥 ] and n is the hemisphere normal; alternatively, 𝐼𝑧 can be approximated
by the irradiance spherical harmonic. For AHD, sh𝑎𝑚𝑏 = [2

√
𝜋, 0, 0, 0, . . . ] is an ambient light in

spherical harmonics, while for HHD it is a hemisphere light (Appendix A.1); for both, sh𝑑𝑖𝑟 = Y(d)
is the vector of SH basis functions evaluated in the direction d (equivalent to a directional light in
spherical harmonics). Radiance reconstruction of 𝐿(𝑠) for a direction 𝑠 is given by

𝑅(𝑠) = 𝐿𝑠ℎ · Y (𝑠) , (29)

and irradiance reconstruction by

𝐼 (𝑠) = SHConvCos(Lsh) · Y (𝑠) , (30)

where SHConvCos(𝑙) applies a normalized cosine convolution (per-band scales of [1, 23 ,
1
4 , . . . ]) to

map the input radiance 𝑙 to irradiance.
Solving for both the highlight direction d and ambient weight𝑤𝑎 in combination is a nonlinear

optimization due to the IrradZ-preserving scale of 1−𝑤𝑎

d𝑧
on the directional light. In practice, we

perform a golden section search for d𝑧 along the 𝜙 given by the optimal linear direction, solving
for𝑤𝑎 analytically and computing the error at each step. This neglects variation in 𝜙 due to energy
in higher bands; if desired, performing a golden section search for 𝜙 with the search for d𝑧 in an
inner loop results in a slight decrease in error, though the difference is usually minor (e.g. less than
7% RMSE) given the presence of the𝑤𝑎 ∈ [0, 1] constraint.

12
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4.2.1 Direct Solve for𝑤𝑎 . Given d, it is possible to directly solve for the ambient weight𝑤𝑎 . We
want to minimize the reconstruction error 𝐸 over the hemisphere Ω+:

𝐸 =

∫
Ω+

(
Y(𝜔) ·

(
𝑤𝑎𝑎 + (1 −𝑤𝑎)𝑑

)
− Y(𝜔) · 𝑖

)2
d𝜔

= (𝑤𝑎 (𝑎 − 𝑑) + 𝑑 − 𝑖)𝑇 G (𝑤𝑎 (𝑎 − 𝑑) + 𝑑 − 𝑖) ,
(31)

where 𝑎 = SHConvCos(sh𝑎𝑚𝑏) is the irradiance from the unit-intensity ambient or hemi light,
𝑑 = 𝜋

d𝑧
SHConvCos(sh𝑑𝑖𝑟 ) is the irradiance from the directional light in the tangent-space highlight

direction d, 𝑖 = 1
𝐼𝑧
SHConvCos(𝐿𝑠ℎ) is the normalized target irradiance, and G is the hemispherical

Gram matrix (Section 4.1, Appendix B). Differentiating the error function 𝐸 with respect to𝑤𝑎 and
setting equal to zero, we have

0 = (𝑎 − 𝑑)𝑇 G(𝑤𝑎 (𝑎 − 𝑑) + 𝑑 − 𝑖) + (𝑤𝑎 (𝑎 − 𝑑) + 𝑑 − 𝑖)𝑇 G(𝑎 − 𝑑) . (32)

Expanding and using the symmetry in G, the closed form expression for𝑤𝑎 is

𝑤𝑎 =
(𝑎 − 𝑑)𝑇 G(𝑖 − 𝑑)
(𝑎 − 𝑑)𝑇 G(𝑎 − 𝑑)

. (33)

5 HEMISPHERICAL OCCLUSION FOR SH REPRESENTING SPHERICAL DATA
Thus far we have dealt with purely hemispherical radiance data in tangent space. In practice, it is
common to have spherical radiance; this can occur if lightmap baking is done in world-space on
curved surfaces, but is more usually encountered at runtime, where SH radiance data is sampled from
a volumetric data structure or simply used as distant environment lighting. Evaluation of irradiance
from a spherical radiance function uses the entire hemisphere of radiance around the normal being
queried; for normal maps, this results in light leaking from below the surface hemisphere (Figure 2).
A more accurate approach is to multiply the radiance function by a hemisphere in the vertex normal
or an occlusion cone, perform the irradiance convolution, and then evaluate, adding self-bounce
(Appendix A) as appropriate.

In tangent space, zeroing out the lower hemisphere—or, equivalently, multiplying by an upper
hemisphere—can be done in a least-squares manner by reprojecting the source spherical harmonic
over the hemisphere (i.e.

∫
Ω+ Y(𝜔) (Y(𝜔) · 𝑖)d𝜔). This reduces to multiplication with the hemispher-

ical Gram matrix (Appendix B), where the SH vector 𝑖 after hemisphere multiplication is given by
G𝑖 . Note that each application of a hemisphere multiply is effectively a stronger enforcement that
the lower hemisphere is zero, and, in the absence of an infinite-order SH expansion, is lossy to the
contents of the upper hemisphere; a hemisphere multiply in spherical harmonics should ideally
only be applied if the input data is known not to be hemispherical.
For arbitrary n and arbitrary-order SH, performing a hemisphere multiply generally means

first rotating the SH into n-aligned tangent space, projecting, then rotating back, which is a fairly
expensive operation [Hable 2014]. If we restrict ourselves to only the linear SH coefficients after
projection, however, we show that the intermediate rotations can be avoided. Using this, it is possible
to either produce a linear spherical harmonic that can be used as input for a direct HHD solve
(Section 3.1.2) or, more directly, to produce HLSH coefficients optimally representing the surface
hemisphere. While the encoding to HLSH from quadratic SH is inherently lossy, it’s relatively
inexpensive, exactly preserves irradiance in the hemisphere normal, and provides much higher
accuracy for grazing normals than using unoccluded SH (Figure 7). These multiplies can additionally
be extended to represent irradiance after occlusion by an arbitrary cone (Section 5.2.1), which is
particularly useful for convolving a radiance environment with an AO visibility cone [Jimenez et al.
2020] (Figure 8).
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(a) Unclipped SH (b) Hemisphere-Clipped SH (c) HLSH Hemi-Multiply

Fig. 7. Using irradiance from an SH that has not been clipped to the surface plane hemisphere results in light
leakage for grazing normals (left). Correct occlusion (center) clips radiance under the surface hemisphere,
and a hemisphere-multiply solve to HLSH (right) is a reasonable approximation for this occlusion. The source
lighting is a quadratic SH probe from a production map.

5.1 Oriented Hemisphere Multiply forQuadratic to Linear SH
By decomposing the hemisphere-projected linear SH 𝑝𝑠ℎ , where 𝑝𝑠ℎ in tangent space is given by
GΩ+𝑙 and 𝑙 is our source quadratic SH, we derive an exact and relatively inexpensive method for
oriented hemisphere projection. From the hemispherical Gram matrix (Appendix B), the L0 band is
given by 𝑝0 = 𝑙0

2 +
√
3
4 𝑙

0
1 ; with rotation, this is

𝑝0 =
𝑙0

2
+
√
3
4
(n𝑠ℎ · 𝑙1). (34)

For 𝑝1, the normal-aligned [𝑙−1′1 , 0, 𝑙1′1 ] components are given by 𝑙1 − (n𝑠ℎ · 𝑙1)n𝑠ℎ . The L1 contri-
bution from the L2 band 𝑝2 is given by rotating the input SH 𝑙2 band into tangent space, forming
the L1 vector [𝑙−1′2 , 0, 𝑙1′2 ], and rotating back to the original coordinate space; using Hable’s method
for spherical harmonic rotation [Hable 2014], 𝑝2 reduces to


(2n2

𝑦 − 1)n𝑥 −(2n2
𝑦 − 1)n𝑧

√
3n𝑦n2

𝑧 −2n𝑥n𝑦n𝑧 (n2
𝑥 − n2

𝑦 + 1)n𝑦

−2n𝑥n𝑦n𝑧 (2n2
𝑧 − 1)n𝑦

√
3(1 − n2

𝑧)n𝑧 (2n2
𝑧 − 1)n𝑥 (n2

𝑦 − n2
𝑥 )n𝑥

(2n2
𝑥 − 1)n𝑦 −2n𝑥n𝑦n𝑧

√
3n𝑥n2

𝑧 −(2n2
𝑥 − 1)n𝑧 (n2

𝑥 − n2
𝑦 − 1)n𝑥



𝑙−22
𝑙−12
𝑙02
𝑙12
𝑙22


. (35)

The normal-aligned 𝑙0′1 is given by
√
3𝜋
2 𝐼𝑧 after projection as per Equation (28). In combination,

[𝑝−1
1 , 𝑝01, 𝑝

1
1] is given by

𝑝−1
1
𝑝01
𝑝11

 =
1
2
©«

𝑙−11
𝑙01
𝑙11

 − (n𝑠ℎ · 𝑙1)n𝑠ℎ
ª®¬ +

√
3𝜋
2

𝐼𝑧n𝑠ℎ +
3
√
5

16
𝑝2. (36)

5.2 HLSH Hemisphere Multiplies for Volumetric Lighting
This same approach can be used to directly encode quadratic radiance SH to hemisphere-occluded,
irradiance-convolved HLSH in an oriented frame. In tangent space, the calculation can be combined
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into a single tangent-space matrix multiplication:4
𝐶𝑎

𝑐𝑥

𝑐𝑦

 =


1

4
√
𝜋

0 2203
8192

√
3𝜋

0 0 0 − 7
√
5

128
√
𝜋

0 0

0 0 0 − 2573
4096

√
3𝜋

0 0 0 − 11
√
15

128
√
𝜋

0

0 − 2573
4096

√
3𝜋

0 0 0 − 11
√
15

128
√
𝜋

0 0 0

 𝑠ℎ𝑟𝑎𝑑 , (37)

To apply this encoding in world space, we reuse our 𝑝2 components from Equation 35 as the
tangent-space 𝑙−12 and 𝑙12 components, along with the zonal L2 (quadratic band) coefficient 𝑝𝑧𝑙2
given by

𝑝𝑧𝑙2 =

√︂
4𝜋
5

(𝑌2 (n) · 𝑙2) (38)

where Y2 (n𝑣) is the quadratic spherical harmonic band evaluated in the hemisphere normal n𝑣 and
𝑙2 is the L2 coefficient vector of the source radiance function.5 In combination, we have a linear
spherical harmonic [𝑝0, 𝑝−1

1 , 𝑝01, 𝑝
1
1] with coefficients

𝐶𝑎 =
1

4
√
𝜋
𝑙0 +

2203
8192

√
3𝜋

(n𝑠ℎ · 𝑙1) −
7
√
5

128
√
𝜋
𝑝𝑧𝑙2, (39)

−𝑐𝑦
𝑐𝑧
−𝑐𝑥

 =
2573

4096
√
3𝜋

(𝑙1 − (n𝑠ℎ · 𝑙1) n𝑠ℎ) +
11
√
15

128
√
𝜋
𝑝2 + (𝐼𝑧 −𝐶𝑎)n𝑠ℎ, (40)

where 𝐼𝑧 = Y(n𝑣) · SHConvCos(sh𝑟𝑎𝑑 ) is the evaluated irradiance in the hemisphere normal
from the source radiance spherical harmonic. Irradiance reconstruction is then given by 𝐼 (n) =
𝐶𝑎 + 𝑐𝑥n𝑥 + 𝑐𝑦n𝑦 + 𝑐𝑧n𝑧 .

If high-roughness indirect specular is approximated as a cosine lobe, this same HLSH-encoded
irradiance function can be used for fetching the irradiance in the reflection direction; occlusion is
particularly important in this case since the reflection lobe is likely to intersect with the hemisphere.

5.2.1 Cone Multiplies for Volumetric SH. This method can be further generalized to account for
a visibility cone oriented along the hemisphere normal with half-angle 𝛼 . Rather than using the
hemispherical Gram matrix GΩ+ , multiplication with a cone in the hemisphere normal can be done
by multiplying the source radiance SH by Gcone =

∫ 2𝜋
0

∫ 𝛼

0 (Y(𝜃, 𝜙) sin𝜃 ) d𝜃d𝜙 , convolving with
the irradiance kernel, and then solving to HLSH as per Section 3.2.2.6

While this method requires that the cone normal is aligned with the hemisphere normal, HLSH
reconstruction is well behaved for directions away from the cone center; as such, this can be used to
model a visibility cone for ambient occlusion by taking the cone center as the hemisphere normal.
Although doing so fails to account for the clipping of the cone by the surface hemisphere in certain
cases, this still provides significantly more accurate results than no occlusion and is relatively
inexpensive.

6 CONCLUSIONS AND FUTUREWORK
We have presented a range of novel techniques related to IrradZ-constrained hemispherical lighting.
We introduced the HHD and HLSH reconstruction models, each of which carries advantages over
AHD for runtime use in level-of-detail and blending, showed how to solve for them from linear
spherical harmonics, and compared their accuracy and visual characteristics against AHD. We
4These coefficients were generated by applying an order-4 SH hemisphere multiply, convolving with the diagonal-matrix
irradiance kernel, and then solving to HLSH.
5Y2 (n) will have been computed as part of the irradiance reconstruction for 𝐼𝑧 and so can be reused.
6We provide a sample implementation at https://www.shadertoy.com/view/lcVSDh.
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(a) Ambient Occlusion Only

(b) Cone Occlusion via HLSH Projection

(c) Difference (in linear space)

Fig. 8. Compared to quadratic SH irradiance evaluation scaled by an AO term (top), evaluation of HLSH
produced via multiplication of quadratic SH with a runtime-generated AO visibility cone (bottom) (Section
5.2.1) produces far more visually convincing results and avoids light leakage. Images are secondary diffuse
irradiance.

then outlined the nonlinear solve from spherical harmonics for AHD and HHD, correcting errors
in prior work and achieving higher quality and more efficient bakes. Finally, we showed how
world-space hemisphere multiplies and hemispherical lighting formats can be used to inexpensively
add hemispherical or visibility cone occlusion to SH data representing spherical radiance.
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Many of these techniques have been used in recent commercial video games. Both the AHD and,
more recently, HHD model have been extensively used in the form of IrradZ lightmaps, with the
improved nonlinear solve algorithm used in the lightmap generation for both. HHD has also been
used, in conjunction with the quadratic-to-linear hemisphere multiply, as a runtime per-vertex
level-of-detail scheme for volumetric SH data.
In the future, it would be interesting to further investigate quantization of IrradZ values. We

assume the IrradZ parameterization in general due to its local-Z irradiance interpolation, and
its use in production on multiple titles. However, while it is clear that linear interpolation of
scalar irradiance is desirable, it is not necessarily the case that𝑤𝑎 and d are the optimal encoded
parameters for representing the hemispherical lighting variation when considering quantization
and the parameter distribution for the different models. For example, the distribution of optimal𝑤𝑎

values for HHD is shifted higher than that for AHD, and as such the highlight directions are pushed
closer to the horizon, indicating that a nonlinear encoding scheme for each may reduce error for
quantized values. Additionally, while IrradZ interpolation is generally well-behaved, encoding 𝐶𝑑d
directly (along with 𝐼𝑧 ) would further improve interpolation behavior. These investigations are left
as future work.
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A IRRADZ SELF-BOUNCE
Combining the IrradZ 𝐼𝑧 value with a hemispherical model enables reasoning about missing data
from self-bounce—the energy reflected by the surface onto itself—not captured in the bake. The
fraction of the incident radiance received by a normal n on a hemisphere oriented around n𝑣 is
given by a hemisphere light 1

2 (1 + n · n𝑣); therefore, the fraction bounced off the surface is given
by 1 − 1

2 (1 + n𝑣 · n) = 1
2 (1 − n𝑣 · n). The diffuse reflected radiance is then given by a hemisphere

colored by the albedo 𝛼 times 𝐼𝑧 in the anti-normal direction:

𝛼𝐼𝑧
1 − n𝑣 · n

2
. (41)

This can be inexpensively evaluated at the pixel normal and added to the result. This technique
does not put any constraints on the method of evaluating the indirect irradiance and requires
only that 𝐼𝑧 is known; Geomerics [Martin 2011] independently derived and used this self-bounce
term for their similarly-irradiance-preserving directional lighting model. Self-bounce has also been
explored in determining shape from shading [Stewart and Langer 1996] and in ambient occlusion
[Jimenez et al. 2020].
Hemisphere self-bounce is much higher frequency than the incident lighting at a surface, com-

pactly and inexpensively reconstructing detail and self-illumination from a lower-resolution bake
(Figure 9). In interactive applications, material texture frequency is usually much higher than the
lightmap frequency, and so self-bounce reconstructs indirect illumination detail that would be
impractical to directly encode.

A.1 Hemisphere Light Self-Bounce
A derivation for hemisphere self-bounce can be also be produced by examining the SH projections.
Hemispheres have non-zero SH projections for odd degree polynomials above linear, while the
clamped cosine has only even degrees above quadratic. This means that when computing the
outgoing radiance for a Lambertian surface only linear SH are used.

A hemisphere of unit intensity oriented in h in SH has coefficients[
√
𝜋,

−
√
3𝜋h𝑦

2
,

√
3𝜋h𝑧

2
,
−
√
3𝜋h𝑥

2

]
. (42)
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(a) Self-Bounce Off (b) Self-Bounce On
Fig. 9. Total lighting from an HHD lightmap, with indirect lighting shown in a cut-out. Self-bounce smooths
the lighting, conserves energy, and adds subtle detail to high-albedo normal-mapped surfaces.

Convolution with a normalized cosine results in[
√
𝜋,

−
√
3𝜋h𝑦

3
,

√
3𝜋h𝑧

3
,
−
√
3𝜋h𝑥

3

]
. (43)

Evaluating linear SH in the direction n results in a vector[
1

2
√
𝜋
,
−
√
3n𝑦

2
√
𝜋

,

√
3n𝑧

2
√
𝜋
,
−
√
3n𝑥

2
√
𝜋

]
. (44)

The dot product of the SH vectors can be scaled by the intensity times the albedo 𝐴 to compute
outgoing radiance:

𝐴

2
+ 𝐴(h · n)

2
= 𝐴

1 + (h · n)
2

. (45)

A second hemisphere with direction −h and intensity 𝐵 results in the equation

𝐴
1 + (h · n)

2
+ 𝐵

1 − (h · n)
2

. (46)

B HEMISPHERICAL GRAMMATRIX
The Gram matrix for spherical harmonics when integrated over the sphere is I, and is sparse and
symmetric over the hemisphere. For SH through the quadratics, it is given by:

G =



1
2 0

√
3
4 0 0 0 0 0 0

0 1
2 0 0 0 3

√
5

16 0 0 0√
3
4 0 1

2 0 0 0
√
15
16 0 0

0 0 0 1
2 0 0 0 3

√
5

16 0
0 0 0 0 1

2 0 0 0 0
0 3

√
5

15 0 0 0 1
2 0 0 0

0 0
√
15
16 0 0 0 1

2 0 0
0 0 0 3

√
5

16 0 0 0 1
2 0

0 0 0 0 0 0 0 0 1
2



(47)
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C DERIVATION OF DIRECT SOLVE FOR HHD FROM LINEAR SPHERICAL
HARMONICS

From the definition of our scaled basis b in Equation 8, it follows that
b𝑐
b𝑥
b𝑦

b𝑧

 =


2𝐶𝑎 +𝐶𝑑

𝐶𝑑d𝑥
𝐶𝑑d𝑦

𝐶𝑎 +𝐶𝑑d𝑧

 =


2𝐶𝑎 +𝐶𝑑

𝐶𝑑d𝑥
𝐶𝑑d𝑦

𝐼𝑧

 , (48)

Using the identities 𝐶𝑎 = 𝐼𝑧𝑤𝑎 and 𝐶𝑑 =
𝐼𝑧 (1−𝑤𝑎 )

d𝑧
(from Equations (4) and (5)), we have:

𝐶𝑑 =
𝐼𝑧 −𝐶𝑎

dz
, (49)

∴ b𝑐 = 2𝐶𝑎 +
𝐼𝑧 −𝐶𝑎

d𝑧
. (50)

From Equation 48 we can define the highlight direction d in terms of b, 𝐶𝑎 , and 𝐶𝑑 :

d =
[b𝑥 , b𝑦, b𝑧 −𝐶𝑎]

𝐶𝑑

; (51)

since d is a unit vector, this is equivalent to

d =
[b𝑥 , b𝑦, b𝑧 −𝐶𝑎]√︁

(b𝑥 )2 + (b𝑦)2 + (b𝑧 −𝐶𝑎)2
. (52)

Substituting d into Equation 50 yields

b𝑐 = 2𝐶𝑎 +
(b𝑧 −𝐶𝑎)

√︃
b2𝑥 + b2𝑦 + (b𝑧 −𝐶𝑎)2

(b𝑧 −𝐶𝑎)

= 2𝐶𝑎 +
√︃

b2𝑥 + b2𝑦 + (b𝑧 −𝐶𝑎)2.

(53)

This is a quadratic in 𝐶𝑎 for which the negative root gives the solution:

(b𝑐 − 2𝐶𝑎)2 = b2𝑥 + b2𝑦 + (b𝑧 −𝐶𝑎)2, (54)

3𝐶2
𝑎 + (2b𝑧 − 4b𝑐 )𝐶𝑎 + (b2𝑐 − (b2𝑥 + b2𝑦 + b2𝑧)) = 0, (55)

𝐶𝑎 =
(2b𝑐 − 𝐼𝑧) −

√︃
(2b𝑐 − 𝐼𝑧)2 − 3(b2𝑐 − ∥b𝑥𝑦𝑧 ∥2)

3
. (56)
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