
A brief story of how we came to use Vitess/Kubernetes

to power some of the biggest entertainment

franchises on the planet

SCALING DATABASES
AT ACTIVISION

Greg Smith
Principal Arch.

Vlad Kovacik
Sr. Expert SRE

SCALING DATABASES

Background Challenges Tech Adoption Conclusions

BACKGROUND

SCALING DATABASES

Bare Metal
Hardcoded DB name in application config

Virtual machines / System containers
● KVM/LXC
● Thousands of database VMs
● Proprietary DB discovery and SQL routing solution
● Shards definition in application configuration
● Automation for DB failure remediation

OVERVIEW

HISTORY OF DB INFRA

DB CHALLENGES

SCALING DATABASES CHALLENGES

SCALABILITY
● Game launch day traffic is a magnitude higher
● Significant load testing to get "right" shard count
● Shards were overbuilt but never scaled back
● No connection pooling in DB routing layer
● High number of connections (10k+ per DB) were

causing MySQL performance and memory issues

SCALING DATABASES CHALLENGES

OPERATIONAL BURDEN
● Failed replica required On-Call to manually run

automation
● Large scale infra failure resulted in hours of manual

work
● After such failure, replicas were having more

transactions than primaries and had to be replaced
● Only able to scale out by doubling the shards count

SCALING DATABASES CHALLENGES

SETUP COMPLEXITY
● Service teams own database operations
● Teams needed embedded experts to build and

maintain databases
● Database cluster with 100+ shards took 2+

days to build - slow development iterations
● Schema migrations required careful planning

and execution in production

TECH ADOPTION

SCALING DATABASES VITESS ADOPTION

NEXTGEN DB EVALUATION
Requirements
● SQL query compatibility
● Minimal changes to the application
● Runs MySQL in backend
● Kubernetes native
● Provides Kubernetes operator

We evaluated multiple candidates and chose Vitess

SCALING DATABASES VITESS ADOPTION

VITESS ADOPTION
Why did we choose Vitess?
● Near drop-in replacement
● We had MySQL experts on staff
● Success stories of other companies
● Large active community

SCALING DATABASES VITESS ADOPTION

ADOPTION OVERVIEW
Small Service
● Was able to fine tune workflows
● Build production confidence
● Align technical expectations with platform teams
● See it in action
● Small blast radius

Large Service

● Take work from small service and apply to large
● Prove out scalability
● Have an entire team onboard to the service
● Gain trust within the company

SMALL SERVICE

SCALING DATABASES

● Small and manageable
● Start with fresh data
● Not in the critical login path
● Easy to make architecture changes before launch
● Work with platform integration might prove useful for larger

projects
● Good baseline for building a framework for other services

SMALL SERVICE

WHY

SCALING DATABASES SMALL SERVICE

TIMELINE

All backed by local storage

● Eventually have choice of Ceph/Local

VO

LXC

In House Orchestration

Ansible

V1

Kubernetes

Helm

V2

Kubernetes

Operator

V3

Kubernetes

Operator

Orchestrator

SCALING DATABASES

● Slow to start, lots of options for how to run things
● Platform integration was fairly smooth
● Testing, more testing

○ Shard expansion
○ Vertical scaling
○ Recovery and Error handling

● Load testing went well
● Built good relationships with open source community
● Launch was a success

SMALL SERVICE

PROOF OF CONCEPT
How Did It Go?

LARGE SERVICE

SCALING DATABASES LARGE SERVICE

Inventory Service stores game
items owned by player

Business Critical

data size

every 2 years
x2~

runs

shards
1~ 00

database size

as of 2023
30+

tb
serves

qps at peak
500k~

SCALING DATABASES LARGE SERVICE

ADOPTION STAGES

2 MONTHS

1.5 MONTHS

1 MONTH

MVP

Load Testing

Production Readiness

SCALING DATABASES

MVP

LARGE SERVICE

● Needed criteria to confirm that service works with Vitess
● Fortunately we had good unit tests coverage
● Identified business critical unit tests
● More than 50% of database tests were failing initially
● Failing tests were categorized into a small number of common

problems
● Engagement with Vitess community
● All blockers were resolved

SCALING DATABASES LARGE SERVICE

INCOMPATIBILITIES & VITESS SPECIFICS

MySQL named locks
(GET_LOCK)

PROBLEM
Vitess implementation creates
reserved connections to the first
Vitess shard which can be
scalability bottleneck

SOLUTION
Redesign app to reduce number
of locks per sec

MySQL foreign key
constraints not fully
supported
PROBLEM
Certain Vitess scaling operations
fail on FK violation

SOLUTION
Temporarily disable FK checks on
the target shards

REPLACE INTO Not
Supported

PROBLEM
Query requires all columns
including shard key which can't
be updated

SOLUTION
Switched to INSERT ON
DUPLICATE

SCALING DATABASES

LOAD TESTING (LT)

LARGE SERVICE

● Player data collocated on shard using PlayerID
● Workload scales well with shards
● LT focused on Vitess components that are on query path:

vtgate (proxy), vttablet (mysql sidecar)
● Confirmed that all components were scaling linearly
● vtgate and vttablet take additional CPU resources compared to

our previous model
● vttablet requires about the same CPU resources as mysql
● Connection pooling offsets added CPU resources

SCALING DATABASES

PRODUCTION READINESS

LARGE SERVICE

● MVP was functional and load tests were promising
● We needed to gain more experience
● Chaos testing
● Configuration deployment under load
● Tuned Vitess configuration for resiliency (semi-sync replication,

orchestrator, Kubernetes pod-disruption-budget for shards)

SCALING DATABASES LARGE SERVICE

MOVING FROM APPLICATION SHARDING
TO A SINGLE ENDPOINT

● Shards in application config

● Some queries were "too" shard
aware

● Data expiration was executing
DELETE with LIMIT on the
shards

Before
● Single database endpoint

● Optimized queries to help
Vitess route them efficiently

● DELETE with LIMIT not
supported so we implemented
"shard walking"

After

CONCLUSION

SCALING DATABASES

BENEFITS

LARGE SERVICE

● Proven method of shard expansion / consolidation
○ Standard tooling provided by Vitess team

● On-call burden greatly reduced
○ Escalations are almost non-existent now

● Database setup using gitops model

SCALING DATABASES CONCLUSION

● We are building a team around
supporting it

● There are approximately 60
separate Vitess clusters
currently in Dev/Prod

● Vitess has become the default
database solution for new
products.

Did it work?

YES

THANK YOU

