

Remote Administration Payload

Malware Analysis Report

May 04, 2023

TLP WHITE: Disclosure is not limited. ByQDEVIoEgIzFw==

TLP WHITE: Disclosure is not limited.

SUMMARY

This report covers the malware analysis process of a third stage Remote

Administration payload named “InfoTrust.dll” which was delivered as a result

of a target of opportunity attack. We sometimes encounter these types of

payloads in the course of our work and are tasked with their analysis and

reverse engineering. The initial stage of infection was automated, randomly

infecting victims across the web, and then sending back initial telemetry such

as the victim’s domain name. Once the attacker notices a compromised

machine is in a domain of interest, they manually deliver the Remote

Administration payload “InfoTrust.dll” with the purpose of gaining complete

remote control of the infected machine.

InfoTrust contains 4 payload stages. The initial stage was identified as Blister

malware and was simply used to hide additional payloads in a legitimately

looking benign software. The final stage is far from being

benign – it is a popular commercial adversary simulation tool called Cobalt

Strike that is commonly used by Red Teams to hack corporate networks but

was stolen and actively used by a wide range of threat actors from ransomware

to espionage focused Advanced Persistent Threats (APTs) groups.

This report will cover the journey to the final payload.

TLP WHITE: Disclosure is not limited.

Initial Analysis – “InfoTrust.dll”

File Name: InfoTrust.dll (484 KB)

PDB Path: C:\UnityCapture\Source\Build\Release-UnityCapturePlugin64bit\UnityCapturePlugin.pdb

Imphash: f4a69846ab44cc1bedeea23e3b680256

MD5: 06f53d457c530635b34aef0f04c59c7d

SHA-1: 7e30c3aee2e4398ddd860d962e787e1261be38fb

SHA-256: aeecc65ac8f0f6e10e95a898b60b43bf6ba9e2c0f92161956b1725d68482721d

Compiler: Microsoft Visual C/C++

Linker: Microsoft Linker (14.25)[DLL64]

Exports: CaptureCreateInstance
CaptureDeleteInstance
CaptureSendTexture
UnitySetGraphicsDevice

Imported DLLs: Kernel32.dll

Entrypoint: Exported function “CaptureSendTexture”

Command line: Rundll32.exe C:\ProgramData\InfoTrust\InfoTrust.dll,CaptureSendTexture

https://www.virustotal.com/gui/file/aeecc65ac8f0f6e10e95a898b60b43bf6ba9e2c0f92161956b1725d68482721d

• .rsrc section has high entropy and in fact contains encrypted malware data

TLP WHITE: Disclosure is not limited.

Using the PDB path the original source code of the legitimate software used to hide the malware in plain sight

was located (https://github.com/schellingb/UnityCapture/blob/master/Source/UnityCapturePlugin.cpp#L74).

Comparing the source code to the disassembled code confirmed it's the same code.

TLP WHITE: Disclosure is not limited.

While comparing the code, a function call was detected in the disassembled code but not in the original source

code. This was the malware’s entry point hiding itself in plain sight.

The function showed signs of API usage via “Import by Hash” mechanism, a decryption loop, and a call to an

unknown location in the end (assumed to be a decrypted stage 02 payload).

TLP WHITE: Disclosure is not limited.

API names hash were broken and allowed annotating the code better, for example:

As well as the decompiler output:

TLP WHITE: Disclosure is not limited.

To find the address of the encrypted buffer, the malware searches for a signature of bytes: 1A 22 12 71 starting

from the return address of the function, and once found they add 4 to skip the signature:

The encrypted buffer was found at 0x180023068 and the size of the buffer is 0x2660F. An IDAPython script

was written to decrypt the buffer:

TLP WHITE: Disclosure is not limited.

Once stage 02 is decrypted, the entry-point is called at 0x018003F90A. The decrypted code’s graph-view:

TLP WHITE: Disclosure is not limited.

An “Import by Hash” function was detected and a script was written to allow finding all the API calls and

annotate them for better code readability:

TLP WHITE: Disclosure is not limited.

For hiding strings from a static analysis, the malware used a technique called “Stack Strings” essentially

building strings on the stack via code instead of storing the strings statically in the binary. The following

example hides the string “shell32.dll” on the stack and uses it later to load that DLL:

Stage 02 is identified as part of the Blister malware, and online documentation (made by other researchers)

shows the following configuration structure for the malware (which isn’t guaranteed to be the same):

A couple of struct members suggest encryption and compression are involved when it comes to unprotecting

the next payload (stage 3). The original payload was assumed to be compressed before it was encrypted, since

lower entropy data can compress better than higher entropy data (e.g. post encryption / ciphertext). An API

usage of “RtlDecompressBuffer” was found (0x18003EF7C), and MSDN documents very similar arguments to

the config members - compressed and uncompressed data sizes:

TLP WHITE: Disclosure is not limited.

The assumption was that the next payload (stage 3) would be decrypted by the time the decompression was

happening and that the next payload will be plain visible after the decompression occurs. The assumption was

correct, and the next stage will be dumped (using a debugger) and analyzed in the future.

A huge function (0x180037287) that uses the following APIs seemed to be injecting code into another process:

That process seems to be “\windows\system32\WerFault.exe” as there were multiple references to this

process name (using stack strings obfuscation) around (and inside) the call to the code injection function.

TLP WHITE: Disclosure is not limited.

Attempting to debug the malware to the point where RtlDecompressBuffer is called (to dump the

decompressed payload) failed because of a computer/domain name check. Since “InfoTrust.dll” was manually

delivered after the attackers identified the victim was in a domain of interest, an anti-debugging mechanism

was inserted automatically as a part of the payload delivery – a custom hash implementation of the targeted

victim’s domain name was hardcoded into the payload to be verified upon execution. If the hashes don’t

match, the execution ends.

This anti-debugging protection was patched to never fail the check.

TLP WHITE: Disclosure is not limited.

Breaking at the call to RtlDecompressBuffer allowed dumping of the next payload (stage 3) and a quick initial

analysis showed it was a Position Independent Code. This means the payload can be injected into any memory

address and it would always work. This can be seen below as RBX is assigned with a RIP-relative address which

points to the start of the payload, essentially an offset relative to the current address in the RIP register.

The payload (shellcode) was built into a full Portable Executable (DLL) binary to help the analysis. VirusTotal

identified the DLL as a part of Cobalt Strike.

TLP WHITE: Disclosure is not limited.

Since Cobalt Strike has been thoroughly analyzed by security researchers, a config-extractor (written by

“Sentinel One”) was found and used to extract its configuration from the payload (stage 3):

TLP WHITE: Disclosure is not limited.

albertonne[.]com was identified as the Command & Control server for Cobalt Strike.

Analyzing the payload shows an import address table is being manually/dynamically built with the following

format:

TLP WHITE: Disclosure is not limited.

Assembly code is nicely annotated:

TLP WHITE: Disclosure is not limited.

Analyzing the shellcode it was clear it unpacks/prepares the next payload (stage 4) to be called in the end of

the shellcode.

Using a debugger the final payload was unpacked, merged with the shellcode into one Portable Executable

(PE) binary, and import address table was fixed manually to produce a complete clean PE that allowed IDA to

identify functions and code patterns to annotate automatically, as well as use Lumina server to pull all the

cloud based code annotations made by other researchers.

TLP WHITE: Disclosure is not limited.

TLP WHITE: Disclosure is not limited.

The binary (stage 4) was uploaded to VirusTotal and was identified with Cobalt Strike. This was a huge full

blown Remote Administration Tool that was annotated by many researchers in the past.

TLP WHITE: Disclosure is not limited.

Additional Resources

• Blister Loader

o https://www.elastic.co/security-labs/blister-loader

• UnityCapture [Gituhb] – The benign software the malware was embedded into

o https://github.com/schellingb/UnityCapture/blob/master/Source/UnityCapturePlugin.cpp#L74

• Cobalt Strike Config-Extractor by “Sentinel One”:

o https://github.com/Sentinel-One/CobaltStrikeParser/blob/master/parse_beacon_config.py

IOCs

InfoTrust.dll

SHA-256 aeecc65ac8f0f6e10e95a898b60b43bf6ba9e2c0f92161956b1725d68482721d

https://www.virustotal.com/gui/file/aeecc65ac8f0f6e10e95a898b60b43bf6ba9e2c0f92161956b1725d68482721d

Stage 3

SHA-256 fc0594d668b01cf523eac836c0eaf57d40ff6ba6792cb3cacfbebedf85044d54

https://www.virustotal.com/gui/file/fc0594d668b01cf523eac836c0eaf57d40ff6ba6792cb3cacfbebedf85044d54

Stage 4

SHA-256 f7025f20fb002f665023356b07d1937886c510e4e30e18ddd2bbbc80df2d88f8

https://www.virustotal.com/gui/file/f7025f20fb002f665023356b07d1937886c510e4e30e18ddd2bbbc80df2d88f8

