
Sparse Shadow Tree

Kevin Myers∗

Treyarch

Abstract

Lighting large outdoor scenes continues to present a challenge for
realtime rendering. While techniques such as Parallel Split Shadow
Maps [Zhang 2006] work well for a subset of the view frustum they
fail to account for all shadowing in an outdoor scene. Lightmaps are
often used as a fallback but require a unique UV parameterization
and do not provide occlusion for moving objects. With deferred
rendering the additional gbuffer overhead for unique parameteriza-
tions presents a challenge as well, making it costly to maintain the
lightmap machinery in a modern pipeline.

Keywords: shadows, shadow compression, sparse tree

Concepts: •Computing methodologies → Visibility;

Figure 1: Treyarch SST full world shadowing

1 Motivation

We want a far shadowing solution that transitions seamlessly to a
canonical split shadowing system for the mid-ground while pro-
viding occlusion for moving objects. In our research, we consid-
ered a voxel representation of visibility [Sintorn 2014] but deter-
mined it would be useful to preserve the original depth for use
in other effects. Shadowmaps are ideal as they do not require a
unique parametrization and store occluder depth. For these reasons
we developed a shadowmap compression technology that com-
presses/decompresses depth images.

∗e-mail:kmyers@treyarch.com
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). c⃝ 2016 Copyright held by the owner/author(s).
SIGGRAPH ’16, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4282-7/16/07
DOI: http://dx.doi.org/10.1145/2897839.2927418

2 Shadow Compression

We generate a global shadowmap on the GPU and then compresses
it on the CPU via a recursive quad-tree process. Our method aims
to convert the shadowmap into a hierarchy of planes. This hierarchy
consists of a forest of sparse quad-trees where each quad-tree rep-
resents a tile of 128x128 shadow map. Compression occurs when a
plane is able to approximate all the depth values in a given node. To
facilitate higher compression ratios we optionally generate a second
depth layer to optimize plane tolerances. Instead of merely biasing
the shadow [Weiskopf 2003] this second layer improves compres-
sion by generating fewer and larger planes Figure 2.

2.1 Point Cloud Fitting

Dual layer guided

Single layer fit

Occluder

Receiver

Figure 2: Plane fitting

At each level of the quad-tree our algorithm generates a 3D point
cloud from the projected depths. We then attempt to fit a linear sys-
tem to the point cloud such that solving the resulting plane equation
reproduces depths that are biased within the bounds calculated by
the two depth layers. If the fit is good enough the tree terminates
otherwise we subdivide and continue the search.

2.2 Encoding

A simple encoding is important for efficient GPU decoding. To
minimize costly branching, each node of the quad-tree encodes ei-
ther a plane or the 4 relative offsets to child nodes.

30-Bit z offset62-bit plane

30-bit plane

16-bit x 16-bit y

Garbage

1 0

0 1

Control

0 0 IndicesIndicesParent node

1st DWORD 2nd DWORD

30-Bit z offset

Figure 3: Encoding

http://dx.doi.org/10.1145/2897839.2927418


Planes are always encoded at 62-bit precision with an additional 
control bit flagging planes that are uniform depth. When the plane 
is decoded the slope is ignored if the plane is flagged as uniform. 
This avoids divergence in the tree walk while halving the storage 
space of a plane with no slope. Relative offsets are either 13-bit or 
10-bit depending upon their depth in the tree.

Since each 128x128 tree can be encoded in parallel, compression is 
very fast typically taking less than 1 minute on 6-core Intel x5690. 
As a post process, the individual quad-trees are gathered into a for-
est indexed by a 2D grid.

3 GPU Decompression

To facilitate filtering and provide a seamless transition to dy-
namic shadows we decompress all static occluders from SST into a 
parallel-split shadow map. Dynamic geo is then rendered over the 
decompressed depth. We directly read the SST when calculating 
lighting for all fragments that fall outside of the split distance by 
projecting shaded fragments onto the 2D grid that indexes the for-
est. We then use a morton code to quickly traverse the selected tree, 
retrieving the shadow depth.

3.1 Runtime Performance

Using SST to store static shadow casting geometry provides a sig-
nificant performance improvement over runtime geometry process-
ing. Typical improvements range from 10% to 20% from reduced 
vertex processing, no overdraw and bypassing the GPU ROP unit. 
Additionally on asynchronous compute platforms such as DX12 de-
compression can occur in parallel with graphics work as the decom-
pression is handled by a compute shader.

References

SINTORN, E., KAMPE, V., OLSSON, O., AND ASSARSSON, U.
2014. Compact precomputed voxelized shadows. ACM Trans-
actions on Graphics 33, 150 (July).

WEISKOPF, D., AND ERTL, T. 2003. Shadow mapping based on
dual depth layers. Proceedings of Eurographics 3, 53–60.

ZHANG, F., SUN, H., XU, L., AND LUN, L. K. 2006. Parallel-
split shadow maps for large-scale virtual environments. Proceed-

Figure 5: SST Shadowsings of the 2006 ACM international conference on Virtual reality
continuum and its applications (June), 311–318.

Figure 4: Decompression perf




