
The Rust Programming
Language for Game Tooling

Dan Olson

Principal Software Architect

The Rust Programming Language For Game Tooling

Who am I?

• Working in games since 2004, Treyarch since 2008.

• Core Engine team.

• Focused on data pipeline and infrastructure tooling.

The Rust Programming Language For Game Tooling

What is Rust?

• Started by Mozilla in 2006, stable release in 2015.

• Currently supported by Amazon, Facebook, Microsoft, and others.

• Focused on security and performance.

The Rust Programming Language For Game Tooling

Outline

• The case for Rust.

• Survey of several interesting uses for Rust.

• Integrating Rust at Treyarch.

The Rust Programming Language For Game Tooling

Code comparison: md5sum

• Easy to read.

• Easy to write.

• Errors are handled.

• Performs well.

hasher = hashlib.md5()
with open(filename, 'rb') as f:

hasher.update(f.read())
print(hasher.hexdigest())

The Rust Programming Language For Game Tooling

Code comparison: md5sum

• Easy to read. 😀

• Easy to write. 😀

• Errors are handled.

• Performs well.

hasher = hashlib.md5()
with open(filename, 'rb') as f:

hasher.update(f.read())
print(hasher.hexdigest())

The Rust Programming Language For Game Tooling

Code comparison: md5sum

• Easy to read. 😀

• Easy to write. 😀

• Errors are handled. 😐

• Performs well.

hasher = hashlib.md5()
with open(filename, 'rb') as f:

hasher.update(f.read())
print(hasher.hexdigest())

The Rust Programming Language For Game Tooling

Code comparison: md5sum

• Easy to read. 😀

• Easy to write. 😀

• Errors are handled. 😐

• Performs well. 🤔

hasher = hashlib.md5()
with open(filename, 'rb') as f:

hasher.update(f.read())
print(hasher.hexdigest())

The Rust Programming Language For Game Tooling

Code comparison: md5sum

• Easy to read.

• Easy to write.

• Errors are handled.

• Performs well.

int file_descript = open(filename, O_RDONLY);
if(file_descript < 0) exit(-1);

unsigned long file_size =
get_size_by_fd(file_descript);

char* file_buffer = mmap(0, file_size,
PROT_READ, MAP_SHARED, file_descript, 0);

MD5((unsigned char*) file_buffer, file_size,
result);

munmap(file_buffer, file_size);

print_md5_sum(result);

Source: https://stackoverflow.com/a/1220177/69283

https://stackoverflow.com/a/1220177/69283

The Rust Programming Language For Game Tooling

Code comparison: md5sum

• Easy to read. 😐

• Easy to write.

• Errors are handled.

• Performs well.

int file_descript = open(filename, O_RDONLY);
if(file_descript < 0) exit(-1);

unsigned long file_size =
get_size_by_fd(file_descript);

char* file_buffer = mmap(0, file_size,
PROT_READ, MAP_SHARED, file_descript, 0);

MD5((unsigned char*) file_buffer, file_size,
result);

munmap(file_buffer, file_size);

print_md5_sum(result);

Source: https://stackoverflow.com/a/1220177/69283

https://stackoverflow.com/a/1220177/69283

The Rust Programming Language For Game Tooling

Code comparison: md5sum

• Easy to read. 😐

• Easy to write. 😢

• Errors are handled.

• Performs well.

int file_descript = open(filename, O_RDONLY);
if(file_descript < 0) exit(-1);

unsigned long file_size =
get_size_by_fd(file_descript);

char* file_buffer = mmap(0, file_size,
PROT_READ, MAP_SHARED, file_descript, 0);

MD5((unsigned char*) file_buffer, file_size,
result);

munmap(file_buffer, file_size);

print_md5_sum(result);

Source: https://stackoverflow.com/a/1220177/69283

https://stackoverflow.com/a/1220177/69283

The Rust Programming Language For Game Tooling

Code comparison: md5sum

• Easy to read. 😐

• Easy to write. 😢

• Errors are handled. 😬

• Performs well.

int file_descript = open(filename, O_RDONLY);
if(file_descript < 0) exit(-1);

unsigned long file_size =
get_size_by_fd(file_descript);

char* file_buffer = mmap(0, file_size,
PROT_READ, MAP_SHARED, file_descript, 0);

MD5((unsigned char*) file_buffer, file_size,
result);

munmap(file_buffer, file_size);

print_md5_sum(result);

Source: https://stackoverflow.com/a/1220177/69283

https://stackoverflow.com/a/1220177/69283

The Rust Programming Language For Game Tooling

Code comparison: md5sum

• Easy to read. 😐

• Easy to write. 😢

• Errors are handled. 😬

• Performs well. 😀

int file_descript = open(filename, O_RDONLY);
if(file_descript < 0) exit(-1);

unsigned long file_size =
get_size_by_fd(file_descript);

char* file_buffer = mmap(0, file_size,
PROT_READ, MAP_SHARED, file_descript, 0);

MD5((unsigned char*) file_buffer, file_size,
result);

munmap(file_buffer, file_size);

print_md5_sum(result);

Source: https://stackoverflow.com/a/1220177/69283

https://stackoverflow.com/a/1220177/69283

The Rust Programming Language For Game Tooling

Code comparison: md5sum

• Easy to read.

• Easy to write.

• Errors are handled.

• Performs well.

let data = std::fs::read(filename)?;
let hash = md5::compute(&data);
println!("{:x}", hash);

The Rust Programming Language For Game Tooling

Code comparison: md5sum

• Easy to read. 😀

• Easy to write. 😀

• Errors are handled.

• Performs well.

let data = std::fs::read(filename)?;
let hash = md5::compute(&data);
println!("{:x}", hash);

The Rust Programming Language For Game Tooling

Code comparison: md5sum

• Easy to read. 😀

• Easy to write. 😀

• Errors are handled. 😐

• Performs well.

let data = std::fs::read(filename)?;
let hash = md5::compute(&data);
println!("{:x}", hash);

The Rust Programming Language For Game Tooling

Code comparison: md5sum

• Easy to read. 😀

• Easy to write. 😀

• Errors are handled. 😐

• Performs well. 😀

let data = std::fs::read(filename)?;
let hash = md5::compute(&data);
println!("{:x}", hash);

The Rust Programming Language For Game Tooling

Dan’s Rust Sales Pitch

• Efficiency of writing code: closer to Python.

• Efficiency of running code: closer to C++.

• Large, centralized ecosystem of “crates”, or community libraries (https://crates.io/).

• Integrated build + package + test tool (“cargo”).

https://crates.io/

The Rust Programming Language For Game Tooling

Code comparison: md5sum

q:\>cargo new md5sum
Created binary (application) `md5sum` package

q:\>cd md5sum
q:\md5sum>cargo add md5

Adding md5 v0.7.0 to dependencies
q:\md5sum>cargo run -- src/main.rs

Compiling md5 v0.7.0
Compiling md5sum v0.1.0 (Q:\md5sum)
Finished dev [unoptimized + debuginfo] target(s) in 1.66s
Running `target\debug\md5sum.exe src/main.rs`

4911739566caf58bf40be5b6d6a19262

The Rust Programming Language For Game Tooling

Code comparison: md5sum

q:\>cargo new md5sum
Created binary (application) `md5sum` package

q:\>cd md5sum
q:\md5sum>cargo add md5

Adding md5 v0.7.0 to dependencies
q:\md5sum>cargo run -- src/main.rs

Compiling md5 v0.7.0
Compiling md5sum v0.1.0 (Q:\md5sum)
Finished dev [unoptimized + debuginfo] target(s) in 1.66s
Running `target\debug\md5sum.exe src/main.rs`

4911739566caf58bf40be5b6d6a19262

The Rust Programming Language For Game Tooling

Code comparison: md5sum

q:\>cargo new md5sum
Created binary (application) `md5sum` package

q:\>cd md5sum
q:\md5sum>cargo add md5

Adding md5 v0.7.0 to dependencies
q:\md5sum>cargo run -- src/main.rs

Compiling md5 v0.7.0
Compiling md5sum v0.1.0 (Q:\md5sum)
Finished dev [unoptimized + debuginfo] target(s) in 1.66s
Running `target\debug\md5sum.exe src/main.rs`

4911739566caf58bf40be5b6d6a19262

The Rust Programming Language For Game Tooling

Code comparison: md5sum

q:\>cargo new md5sum
Created binary (application) `md5sum` package

q:\>cd md5sum
q:\md5sum>cargo add md5

Adding md5 v0.7.0 to dependencies
q:\md5sum>cargo run -- src/main.rs

Compiling md5 v0.7.0
Compiling md5sum v0.1.0 (Q:\md5sum)
Finished dev [unoptimized + debuginfo] target(s) in 1.66s
Running `target\debug\md5sum.exe src/main.rs`

4911739566caf58bf40be5b6d6a19262

The Rust Programming Language For Game Tooling

Dan’s Rust Sales Pitch

• Efficiency of writing code: closer to Python.

• Efficiency of running code: closer to C++.

• Large, centralized ecosystem of “crates”, or community libraries (https://crates.io/).

• Integrated build + package + test tool (“cargo”).

• Static, compile-time validation of common memory problems.

• Static, compile-time validation of common multithreading problems.

https://crates.io/

The Rust Programming Language For Game Tooling

Case study: Treyarch Image Packer

• Rust version deployed in 2018.

• Heavily multithreaded.

• Active development throughout its lifetime.

• Total “crash” issues encountered: 2.

The Rust Programming Language For Game Tooling

Dan’s Rust Sales Pitch

• Efficiency of writing code: closer to Python.

• Efficiency of running code: closer to C++.

• Large, centralized ecosystem of “crates”, or community libraries (https://crates.io/).

• Integrated build + package + test tool (“cargo”).

• Static, compile-time validation of common memory problems.

• Static, compile-time validation of common multithreading problems.

https://crates.io/

The Rust Programming Language For Game Tooling

Rust for Game Tools

• Error Handling

• Multithreading

• Parsing Text

• Command Line Interfaces

• Parsing Debug Info

• C ABI compatibility

• Web Applications

• GUIs

The Rust Programming Language For Game Tooling

1/8 - Error Handling

• Result – holds the success or failure state of an operation.

• Panic – instant program failure for unrecoverable errors.

• ? Operator – pass a failed Result up the callstack.

• Use the anyhow crate to add context to errors.

let file = std::fs::read(path)?;

The Rust Programming Language For Game Tooling

1/8 - Error Handling

let file = std::fs::read(path)?;

let file = std::fs::read(path)
.with_context(|| format!("Reading contents of {:?}", path))?;

Error: Reading contents of "test.txt"

Caused by:
The system cannot find the file specified. (os error 2)

Error: The system cannot find the file specified.
(os error 2)

The Rust Programming Language For Game Tooling

2/8 - Multithreading

• Using the rayon crate, multithreading is quick, easy, and safe.

file_names
.iter()
.map(|x| hash_file(x))
.collect();

file_names
.par_iter()
.map(|x| hash_file(x))
.collect();

The Rust Programming Language For Game Tooling

2/8 - Multithreading

• Using the rayon crate, multithreading is quick, easy, and safe.

file_names
.par_iter()
.map(|x| hash_file(x, &mut count))
.collect();

The Rust Programming Language For Game Tooling

3/8 - Parsing Text

• Use the serde crate for generic serialization/deserialization.

#[derive(Deserialize)]
struct Config {

string: String,
number: i32,
list: Vec<String>,

}

let config: Config = serde_json::from_str(&text)?;

let config: Config = serde_yaml::from_str(&text)?;

The Rust Programming Language For Game Tooling

4/8 - Command Line Interfaces

• Use the structopt crate to create command line interfaces.

/// Generate a hash of all source and include files specified
by one or more .vcxproj files.
#[derive(StructOpt)]
struct SourceHash {

/// One or more vcxproj files contributing to the hash.
#[structopt(parse(from_os_str))]
files: Vec<PathBuf>,

#[structopt(long)]
verbose: bool,

}

let options = SourceHash::from_args();

sourcehash 0.1.0
Generate a hash of all source and include files specified by one or
more .vcxproj files

USAGE:
sourcehash.exe [FLAGS] [files]...

FLAGS:
-h, --help Prints help information
-V, --version Prints version information

--verbose

ARGS:
<files>... One or more vcxproj files contributing to the hash

The Rust Programming Language For Game Tooling

5/8 - Parsing Debug Info

• Use pdb (win) and gimli (elf) crates to

inspect debug info.

• This tool is now open-sourced!

• https://github.com/Activision/structpack

gz_header_s - 80 bytes, 12 padding
(optimal size should be 72 bytes, 4 padding)
struct gz_header_s
{

int text; // 4 bytes
<padding> ; // 4 bytes
uLong time; // 8 bytes
int xflags; // 4 bytes
int os; // 4 bytes
Bytef* extra; // 8 bytes
uInt extra_len; // 4 bytes
uInt extra_max; // 4 bytes
Bytef* name; // 8 bytes
uInt name_max; // 4 bytes
<padding> ; // 4 bytes
Bytef* comment; // 8 bytes
uInt comm_max; // 4 bytes
int hcrc; // 4 bytes
int done; // 4 bytes
<padding> ; // 4 bytes

};

https://github.com/Activision/structpack

The Rust Programming Language For Game Tooling

6/8 - C ABI compatibility

• Bind Rust code to other languages (e.g. python, nodejs, C, wasm).

/// Formats the sum of two numbers as string.
#[pyfunction]
fn sum_as_string(a: usize, b: usize) -> PyResult<String> {

Ok((a + b).to_string())
}

/// A Python module implemented in Rust.
#[pymodule]
fn string_sum(py: Python, m: &PyModule) -> PyResult<()> {

m.add_function(wrap_pyfunction!(sum_as_string, m)?)?;

Ok(())
}
Source: https://crates.io/crates/pyo3

https://crates.io/crates/pyo3

The Rust Programming Language For Game Tooling

7/8 - Web Applications

• There are lots and lots of crates for web apps. I like rouille for quick, simple ones.

• But tide or actix-web might be better for more substantial apps.

rouille::start_server("0.0.0.0:80", move |request| {
Response::text("hello world")

});

#[async_std::main]
async fn main() -> tide::Result<()> {

let mut app = tide::new();
app.at("/orders/shoes").post(order_shoes);
app.listen("127.0.0.1:8080").await?;
Ok(())

}
Source: https://crates.io/crates/tide

Source: https://docs.rs/rouille/3.1.1/rouille/

https://crates.io/crates/tide
https://docs.rs/rouille/3.1.1/rouille/

The Rust Programming Language For Game Tooling

8/8 - GUIs

• Native Rust: iced, druid, egui

• C++ Bindings: ritual (Qt), relm (Gtk), imgui-rs, web-view

ui.heading("My egui Application");
ui.horizontal(|ui| {

ui.label("Your name: ");
ui.text_edit_singleline(&mut name);

});
ui.add(egui::Slider::new(&mut age, 0..=120).text("age"));
if ui.button("Click each year").clicked() {

age += 1;
}
ui.label(format!("Hello '{}', age {}", name, age));

Source: https://crates.io/crates/egui

https://crates.io/crates/egui

The Rust Programming Language For Game Tooling

Integrating Rust at Treyarch

• Started work in late 2017.

• 3 major tools, around 20 smaller one-off tools.

• Around 120K LOC

• 27 individual contributors.

• Extremely high stability.

The Rust Programming Language For Game Tooling

Rust Downsides

• Steep learning curve… very different from C++.

• Complicated language… lots of corners.

• Relies heavily on ecosystem.

• Compile times as bad as or worse than C++.

Managing these downsides is key to successful integration!

The Rust Programming Language For Game Tooling

Integration Tips

• Communicate!

• Keep Rust siloed off until there is a critical mass of experience.

▪ Find an unmaintained tool and make it better!

• Start with the best workflow.

▪ vscode + rust_analyzer + cargo-edit + rustfmt + clippy

• Bad Rust code has the same safety guarantees as good Rust code!

• Initial hurdles are high, but large productivity gains after they are cleared.

• Provide time and space to both learn and teach.

▪ Presentations, courses, examples, code reviews.

The Rust Programming Language For Game Tooling

Learning Resources

• Dive into code!

▪ https://leetcode.com/

▪ https://adventofcode.com/

• Dive into a book!

▪ “The Rust Programming Language” – Klabnik & Nichols

▪ “Programming Rust” – Blandy & Orendorff

• Dive into online resources!

▪ https://www.rust-lang.org/learn

▪ https://play.rust-lang.org/

https://leetcode.com/
https://adventofcode.com/
https://www.rust-lang.org/learn
https://play.rust-lang.org/

Thank you!

We’re Hiring!

Gameplay Engineers (mid/senior)
UI Engineers (mid/senior)

Online Engineers (mid/senior)
Senior Test Automation Engineers

And many more!

https://careers.treyarch.com/

https://careers.treyarch.com/

