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Fig. 1. Our system allows for player-driven lighting changes at run-time. Above we show a scene where a door is opened during gameplay. The image on
the left shows the final lighting produced by our system as seen in the game. In the middle, we show what the scene would look like without the methods
described here (top). Our system enables us to efficiently precompute the associated lighting change (bottom). This functionality is build on top of a dynamic
light set system which allows for levels with hundreds of lights who’s contribution to global illumination can be controlled individually at run-time (right).

We describe the design and evolution of UBERBAKE, a global illumination
system we have used in multiple AAA games, which supports dynamic
lighting changes in response to certain player interactions. Instead of relying
on a fully dynamic solution, we use a traditional static light baking pipeline
and extend it with a small set of features that allow us to dynamically update
the precomputed lighting at run-time while introducing little to no overhead.
This means that our system works on the complete set of target hardware,
ranging from high-end PCs to previous generation gaming consoles, allowing
the use of dynamic lighting changes for gameplay purposes. In particular,
we show how to efficiently precompute lighting changes due to individual
lights being enabled and disabled and doors opening and closing. Finally,
we provide a detailed performance evaluation of our system using a set of
production levels and discuss how to extend its dynamic capabilities in the
future.

CCS Concepts: » Computing methodologies — Ray tracing; Graphics
systems and interfaces.

Additional Key Words and Phrases: global illumination, baked lighting, real

time systems

1 INTRODUCTION

AAA games today produce images at real-time frame rates (usually
30 or 60 frames per second) that can rival the realism and complexity
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of offline rendered movies from just a few years ago. This leaves
just 16-30 ms to simulate the virtual environment, react to player
input, and produce images showing a wide range of complex light-
transport phenomena. This last goal can be especially challenging,
as players enjoy games on a variety of hardware platforms and
comparable quality needs to be achieved on all of them, including
ones less powerful than the state of the art such as mobile devices
or previous generation consoles.

One of the difficulties of the rendering process is computing
global illumination—the component of the lighting that arrives at
each point not directly from a light source, but after some number
of bounces off other surfaces in the scene. Given the limited time
budget, most modern game engines rely on some form of precom-
putation or baking. Parts of the lighting are computed offline, stored
in some data structure, and efficiently retrieved at run time. This
was pioneered by the work of id Software on Quake and Quake
2 [Abrash 2000], with the latter being the first game to feature truly
indirect lighting, precomputed and stored in textures.

While recent developments in hardware-accelerated ray trac-
ing [Parker et al. 2010; Wyman et al. 2018] provide hope for limited
forms of real-time global illumination, these techniques have so far
remained too costly as general lighting solutions in AAA games.
With the exception of isolated effects (e.g. mirror reflections) real-
time ray tracing is unlikely to supplant current baking-based solu-
tions, or even be universally available, for at least the next console
generation (and likely longer for mobile platforms).
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The limitations of baked lighting are, however, significant. Any
changes to the geometry require a costly, offline update that can
often take multiple hours, significantly increasing the iteration time
for artists. Because the precomputation is performed assuming static
level geometry, any changes at run-time have no effect on lighting.
For example, a player might destroy a wall, which should flood
the inside of a building with light; however, since the lighting was
precomputed with the wall intact, there is no information available
about how the lighting distribution inside the room should change
when it is no longer there. Even simple interactions like opening
doors might leave the level’s lighting in an inconsistent state.

We describe the design and evolution of UBERBAKE, a dynamic
light baking system we developed to address these issues and which
we’ve since used on multiple AAA games. UBERBAKE was developed
over the course of multiple releases and innovation was driven
mainly by gameplay and level-design requirements. Particularly,
we wanted to implement a system for global illumination in which
certain player actions can cause dynamic lighting changes. This
allows the lighting to be used not only for dramatic visuals, but
also as part of the gameplay, for instance to drive player’s attention

(e.g.

flickering lamp can suggest a point of interest) or as a way to

solve the game’s puzzles (e.g., shooting lights out before engaging
enemies will make them less likely to aim accurately).

1.1

Design criteria

During the development of this system we had to fulfill a set of hard
constraints. A system that failed to meet one of them would not

have been shippable.

C.1

C.2

C3

Near-zero runtime overhead. We want to ship games using
this system on a wide variety of hardware, from modern gaming
PCs, to consoles, to smart phones. Since the lighting effects
are relevant for gameplay, we cannot disable them on low end
platforms. For our system to run on all target platforms, it has
to have very little overhead on top of existing static lighting.
Fixed engine and tools code. We have a large amount of
engineering and art resources invested in existing tools and
cannot change them significantly. Additionally, we do not have
the resources to rewrite large parts of the engine. We had to ex-
tend the existing baking pipeline without a complete overhaul,
and implementation time has to be weighed against supporting
production or extending the baking pipeline in other ways.
Fixed level geometry. Many global illumination algorithms
impose specific restrictions on level geometry such as a requir-
ing a minimum wall thickness, preferring axis aligned features,
and more. There was already a significant amount of existing
content when this system was implemented. Since it was not
feasible to rework much of the content, the system had to work
well while only requiring minor level adjustments.

Meeting the above mentioned constraints was the highest priority
and narrowed down our options in the design of the system, but we
also strived to optimize for the following design goals.

G.1

Minimize artist iteration time. As opposed to run-time per-
formance, we do not have any hard constraints on baking per-
formance. Still, long bakes increase artist iteration times which
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we would like to avoid. Bake time should scale with scene
complexity and the number of interactive elements per scene.
Minimal content creation overhead. Previous systems had
content creators manually tag geometry, resulting in errors
due to mis-tagging, a large workload on lighting artists and
ultimately, the system not being widely used.

Maximize implementation orthogonality. We want to be
able to add interactive elements and improve the baking code
without significant changes to the run-time system. This allows
us to expose new functionality to artists without the risk that
engine changes pose.

G.2

G.3

Non-goals. We explicitly do not aim to develop a system for use in
a customer facing game engine such as UNITY or UNREALENGINE,
but rather a tool that is used internally. This means we only need to
support the hardware that our games ship on, without the need to
provide fallback solutions for legacy platform, that may be poten-
tially in use by some customers of these general game engines. We
can also take certain liberties in choosing implementation details, as
all the features are developed in close collaboration with the people
using them. For example, in some cases we can rely on a manual
procedure, if we know it will not cause an unnecessary burden for
the users and when automatic one would be difficult or time con-
suming to implement reliably. Additionally, we did not set out to
develop a general solution to dynamic global illumination. Instead
we empower artists to decide which dynamic effects are important
for look and feel in each level. While the above constraints and
goals might seem overly restrictive in an academic context, to our
knowledge they are common in production environments and thus
our solutions to them are likely broadly applicable.

The central insight of our work is that we can choose a limited
subset of user interactions that affect lighting (enabling/disabling
lights and opening/closing doors) and receive many of the benefits
of a fully dynamic global illumination solution. This made it possible
to 1) efficiently pre-compute lighting changes associated with each
interaction and 2) implement a run-time system that, on average, is
no slower than our previous fully static implementation.

1.2 Existing and Alternative Solutions

There exists a vast body of research on global illumination methods
for real-time applications. Before endeavouring to develop a new
approach, we carefully considered and evaluated existing techniques
against our specific goals and constraints, i.e., runtime performance
and support for dynamic geometry.

Real-time Light Transport (dynamic lighting and geometry). Real-time
light transport methods support dynamic lighting and geometry
with minimal precomputation at the cost of run-time performance.
Real-time path tracing offers a conceptually simple framework for
computing global illumination, and it has recently gained popular-
ity [4A Games 2019; Infinity Ward 2019; Remedy Entertainment
2019; Schied 2019] due to the availability of hardware accelerated
ray intersection queries [Parker et al. 2010; Wyman et al. 2018] and
recent advances in denoising methods [Koskela et al. 2019; Mara
et al. 2017; Schied et al. 2017, 2018].



Many light methods cast the indirect illumination problem in
terms of direct illumination from a potentially large number of
related virtual light sources [Dachsbacher et al. 2014; Keller 1997].
Unfortunately the current generation of consoles does not ship with
dedicated ray-tracing hardware. Hence, given constraints C.1 and
C.2, both real-time path tracing and solving the massive visibility
problem in the context of many light methods remains infeasible.

Using a simplified, volumetric representation of the scene is a
common way to decouple geometry from the lighting calculations
in order to reduce the lighting and visibility computation time while
supporting dynamic geometry and lighting [Crassin et al. 2011; Ka-
planyan and Dachsbacher 2010; Laine and Karras 2010; Yudintsev
2019] and can be combined with real-time path tracing [Majercik
et al. 2019]. Aside from the non-trivial runtime cost, the main down-
side of volumetric light transport methods is rooted in the mismatch
between the simplified scene representation used for lighting and
the scene geometry. Achieving consistent lighting without leaks or
interpolation artifacts remains a challenge, often requiring changes
to level design [Hooker 2016; Silvennoinen and Timonen 2015],
violating constraint C.3.

Precomputed Light Transport (dynamic lighting, static geometry). Pre-
computed light transport (PRT) methods allow dynamic environ-
ment lighting while keeping the runtime cost low under the as-
sumption that geometry is mostly static by performing the expen-
sive visibility calculations offline [Silvennoinen and Timonen 2015;
Sloan et al. 2002]. Direct-to-indirect transport methods generalize
the lighting model to allow arbitrary, local light sources [Hasan
et al. 2006; Kontkanen et al. 2006; Lehtinen et al. 2008; Martin and
Einarsson 2010]. With only a few exceptions, PRT methods remain
largely incompatible with arbitrary geometry changes, and those
that do [Loos et al. 2011, 2012; Silvennoinen and Lehtinen 2017]
provide support that is too limited for our context.

Precomputed Lighting (static lighting and geometry). At the other end
of the spectrum, constraining both lighting and geometry to be static
has, naturally, the smallest runtime cost, and is arguably the most
common form of global illumination in game production [Barré-
Brisebois 2017; Iwanicki and Sloan 2017; Neubelt and Pettineo 2015;
O’Donnell 2018]. Despite fulfilling all of our constraints we cannot
use any of these techniques as is, because they do not allow for any
dynamic lighting changes. Still, particularly due to their run-time
performance characteristics they serve as a good basis to build upon.

Limited forms of dynamic lighting can be supported by precom-
puting multiple lighting scenarios and interpolating between them
at runtime at the expense of increased streaming memory cost. In
contrast to the fixed memory overhead of precomputed transport
methods, the memory cost from blending the lighting solutions is
temporary and can usually be streamed in and out [Blizard 2017;
McAuley 2018; Oztiirk and Akyiiz 2017]. These approaches work
well in scenarios where lighting changes are limited and not con-
trolled by the player, e.g., when changing the time-of-day. There,
streaming load is easily predicted and at most two different sets of
lighting have to be kept in memory. Our motivation dictates that
we want to support player-driven lighting changes to a large set
of interactive elements. Using existing techniques would quickly
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exhaust our memory budget and streaming in a completely new set
of lighting in response to player input is not feasible.

1.3 Summary and overview

In summary, no single existing method is able to readily meet our
design goals under the performance constraints. We therefore de-
veloped our own system based on precomputed lighting using a
mixture of volumetric and lightmapped representations for max-
imum performance while supporting dynamic geometry changes
via efficient local lighting updates. In the following we will first
describe our (static) global illumination solution (Section 2) and
then go into detail about how we gradually extended it during the
development of multiple games to handle dynamic lighting effects.
“Dynamic Light Sets” (DLSs) enable us to turn sets of lights on and
off in response to player actions (Section 3) and update their contri-
butions to global illumination accordingly. Finally, in Section 4 we
extend DLSs to handle non-linear changes in lighting, such as ones
resulting from opening and closing doors.

2 OUR BAKED GLOBAL ILLUMINATION SOLUTION

Before we dive into the dynamic part of our system, we describe
the basic processes and datastructures we use to incorporate static
global illumination into our games. While doing so we will highlight
some of the changes we made to the purely static lighting system to
prepare for the introduction of dynamic elements. It turned out that
all of those changes also improve our static lighting performance,
quality, and memory usage, and are in use even when there are no
dynamic elements present in the level.

We build off a static lighting system typical in game production
and only provide a high-level view of its workings, sufficient enough
to understand the changes to make it dynamic. A more detailed treat-
ment of a static baking system similar to the one we started with is
available in Iwanicki and Sloan [2017]. The techniques described
there result in a performant approach to baked global illumination
that has been proven to work well in practice in a wide variety of
scenarios. Lighting artists, level designers and engineers are familiar
with the limitations of this type of system and know how to work
around potential pitfalls. These considerations are important in a
production system since changing central technology always re-
quires buy-in from all parties. Many of the decisions we will outline
in the following are therefore driven by user concerns as much as
by technological arguments.

There are four parts to our lighting solution: how we represent
(Section 2.1) and store (Section 2.2) lighting, how we precalculate
global illumination and what assumptions we make regarding level
geometry (Section 2.3), and how we use the precomputed data to
incorporate global illumation during shading on both static and
moving objects (Section 2.4).

2.1 Representing lighting

When choosing the representation for our lighting data we have a
wide variety of options. Not only do we have to decide how we store
lighting values, but also which lighting we store in the first place.

Path notation. For this purpose we introduce some notation to allow
us to precisely express paths and their contributions. We extend
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Heckbert [1990]’s path notation for our use case and denote light
sources with Ly, diffuse reflections with D and receivers with R. We
use multiple different types of light sources and we will discuss them
in detail later this section. A set of light paths X can be described
by a regular expression with each symbol corresponding to an
interaction event. For example LyDDR denotes all paths that start
at a light source and end at a receiver via two diffuse bounces. We
abuse notation, and will use X to refer both to a set of paths, as well
as the corresponding lighting resulting from those paths.

We largely go with the common industry practice of only precom-
puting diffuse indirect lighting, that is, paths of the form LyD*R.
We convert our run-time material model to purely Lambertian dur-
ing baking using total hemispherical reflectance (instead of the
diffuse albedo component). This gives us a low-frequency approxi-
mation to the lighting equation while including much of the energy
that contributes to the shaded result. Including specular or direct
lighting would require storing data at a much higher resolution
to allow satisfactory reconstruction quality. We instead use run-
time methods to compute those contributions. That said, in some
cases (illustrated below) we do include direct lighting in the bake
to trade worse lighting quality for better run-time performance.
(b) static light (d) sky light

(a) primary light (c) emissives

& o

o ®

(e) lightmap texel

Here we show the different types of light paths we compute for
the example of a lightmap texel (e). Primary lights Lp (a) are the
most common light sources in our system. For these we bake indi-
rect lighting only, direct lighting is computed at run-time per pixel.
Artists can also place static lights Lg (b) for which direct lighting
is baked as well, this is done in areas with many lights where we
would not be able to compute direct lighting, and particularly shad-
ows, at run-time. We additionally support lighting from emissive
geometry Lg (c), and again, this would be too expensive to evaluate
at run-time, so both direct and indirect lighting is baked. Note that
here lights are infinitesimal light sources such as point or spot lights,
while emissives are triangles with an emissive material. Finally, any
light coming from the sky Lgyy (d), directly or indirectly, is baked,
since computing it at run-time would be prohibitively expensive.
This gives us the final baked lighting in the form

Ly = ((LpD) | (Ls | Lg | Lsky))D'R. (1)

2.2 Storage formats

We store this lighting in different formats depending on memory con-
sumption, run-time access performance, and reconstruction quality
considerations. Having multiple storage solutions gives us flexibility
in trading off quality and performance depending on the current
needs of game and level design. Ensuring that the lighting is consis-
tent despite the different storage formats is important, as it allows
us to use them all in a single scene without artifacts (see Fig. 2).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2020.

Directional lighting encoding. Storing simple scalar irradiance would
preclude the use of normal maps at run-time, which are critical
for appearance fidelity. We therefore store incoming radiance in
some basis, e.g., spherical harmonics, which allows us to evaluate
irradiance for a given surface normal.

Lightmaps. Lightmaps are the traditional and still widely used way
to store lighting data for surfaces in a level. While they can accu-
rately represent surface lighting and are very efficient at run-time,
they do come with several downsides. Most importantly, meshes
with fine features may require impractically high lightmap resolu-
tions and often exhibit visual artifacts caused by discontinuities in
the parametrization. Examples of such difficult meshes are door han-
dles and wires. Still, we use lightmaps for geometry created by level
designers in our proprietary level editing tools as well as for large,
structural models, such as individual wall segments, or entire build-
ings. This geometry is mostly comprised of big, flat surfaces, which
makes it easy to automatically generate high-quality lightmap UVs.
To encode the lighting data we use a variant of Ambient Highlight
Direction (AHD) encoding [id Software 1999], with improvements
by Sloan and Silvennoinen [2018]. We explored alternatives, but they
are more expensive and our lighters prefered this representation.

Local Light Grids (LLGs). Small props such as debris, or intricate
ones like cars, doorways or characters are not an ideal application
for lightmaps. Debris models might be instanced many times in
a level, and, for more intricate models, computing lightmap UVs
automatically is prone to failure and edge cases.

Instead we use a data structure we call “Local Light Grids,” which
was first introduced by Iwanicki and Sloan [2017] to provide a volu-
metric alternative to lightmaps. Instead of trying to store lighting
values on the surface of objects, LLGs store them in SH radiance
probes around the model, akin to an object-centric irradiance vol-
ume [Greger et al. 1998]. While Iwanicki and Sloan [2017] used a
tetrahedral grid, we decided to go with a simpler Euclidean grid for
faster lookups and full decoupling of the lighting, using an oriented
bounding box to represent the volume around the model. The main
issue with such volumetric storage methods is that the resulting
lighting reconstruction misses high frequency detail introduced by
visibility changes over the model surface. LLGs solve this problem
by storing an additional self-visibility term for each model vertex,
and accounting for it when interpolating lighting data from the grid
probes. An additional benefit of decoupling lighting from visibility

Fig. 2. We use different types of lighting representation in the same scene.
On the left is a breakdown of models that use LLGs (teal) and geometry
that uses lightmaps (yellow). On the right we highlight dynamic objects in
red. Note that dynamic objects still use LLGs, hence the rendering pipeline
is unaware of the difference.



is that self-visibility stays the same, no matter where the model is
placed in the scene. This allows using instancing to render a model
at many scene locations, since the per vertex data is the same for
each instance and only the grid probe values change for each in-
stance. This representation handles fine features, like door knobs or
wires, that would require impractical resolutions with lightmaps.

The Global Light Grid (GLG). We now have two representations
for lighting on static models, but we are missing a way to shade
moving objects. While dynamic objects in our system do not affect
global illumination, we still want precomputed global illumination
to influence characters, vehicles, and particle effects. One way to
handle this is to introduce a volumentric lighting representation
that allows us to sample indirect lighting at arbitrary points in
space. This means that moving objects can evaluate static lighting
at whatever position they happen to be in.

We use a traditional radiance probe grid, distributed over the
whole map using a tetrahedral grid [Cupisz 2012; Iwanicki and
Sloan 2017]. Each probe stores radiance in a spherical harmonics
(SH) basis. For an arbitrary point and normal we can then compute
indirect lighting by finding the nearest probes, interpolating the SH
values, and evaluating with a convolution to compute the irradiance
for the respective normal. To control light leaking we also store
coarse visibility information per tetrahedral face and use it during
interpolation to cull non-visible probes [Iwanicki and Sloan 2017].
Volumetric effects sample the GLG directly, while models resample
the GLG into a dynamic atlas of LLGs per model. This way the
run-time implementation of the lighting lookup can be the same for
both static and dynamic objects, with the only difference being the
source of the data stored in LLGs. This allows us also to amortize the
high cost of GLG lookups—instead of performing such lookups for
the millions of visible pixels, we perform it only for the thousands
of probe position in the LLG. Just like the LLGs, the GLG stores
radiance, which allows us to multiply it by per-vertex self-visibility
before performing the cosine convolution.

2.3 Baking via series expansion

Our precomputation uses Monte Carlo ray tracing, but in contrast
to alternatives like path tracing [Immel et al. 1986; Kajiya 1986], we
structured it as a series expansion of the rendering equation, where
we compute one bounce at a time, for the whole map. In essence, this
creates a sequence of final gather [Reichert 1992] passes that can
reuse all of the information computed from the previous bounces.
With diffuse lighting, each bounce can be stored in the same data
structures (lighmaps and LLGs) used for the final rendering. Doing
so means that sub-paths are maximally reused, which introduces
bias, but is a huge performance improvement over path tracing,
where sub-paths are not shared at all. The series expansion also
means that data structures only need to be updated between bounces,
minimizing both the temporary memory that needs to be stored
and eliminating the need for locking a read/write data structure,
as irradiance caching [Ward et al. 1988] traditionally requires. We
use Embree [Wald et al. 2014] for tracing the final gather rays and
aggressively pre-sort the rays to maximize SIMD coherence.
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2.4 Run-time shading

Due to our performance constraints, we have to make sure that we
do as little work as possible at run-time. This deems solutions that
require searches in depth maps [Majercik et al. 2019], or software
interpolation [Silvennoinen and Timonen 2015] too expensive. We
also want to simplify the rendering to avoid a combinatorial explo-
sion of shaders. Using LLGs for both dynamic and static models
is an example of this, where identical shaders simply run with dif-
ferent resources. We perform expensive operations like evaluating
the GLG with compute shaders at sparse locations for dynamic ob-
jects, volumetrics and effects. We moved LLG evaluation from vertex
shaders, to pixel shaders, and back to vertex shaders in the three
games we have shipped using them. This was based on performance
constraints, efficiency improvements in the geometry submission
pipeline, and the complexity of the content being used on each title.

3 INTERACTIVE LIGHTING UPDATES

Up to this point, all the techniques we describe form a capable and
performant, but static global illumination system. While we did
have some capability to change lighting during gameplay, this was
limited to large scale scripted events, such as buildings collapsing,
required many hours of artists and engineering effort to set up in
each instance and hence was used very sparingly. In this and the
following sections we will go into detail about how we extended
our new system to allow for player-driven dynamic lighting updates.
Our goal is to do so with a minimal set of changes, while preserving
the performance and memory characteristics of the static solution.
We also make sure that the system we introduce is extensible and
we are able to support complex lighting changes, such as the ones
discussed in Section 4.

3.1 Dynamic Light Sets

The first iteration of our dynamic lighting system incorporated
“Dynamic Light Sets” (DLSs). This addressed the simple problem
of being able to toggle sets of lights at run-time while updating
their contributions to global illumination. We chose this as a first
step because it is relatively simple to implement and has a large

Fig. 3. Our dynamic lighting system enables us to update global illumination,
even in complex scenes. We can go from a completely dark room (left) to a
brightly lit one (right) with little performance impact at run-time. Note also,
that in most cases building walls severely limit the influence range of the
illumination change. Here for example, the lighting in the adjacent room
does not change substantially when we turn on the ceiling light.
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impact on gameplay (e.g., being able to shoot out lights in a first-
person shooter). A dynamic light set S is a set of primary lights
Lp;. Following our path notation, its baked lighting contribution is
S = (Lp; | Lpy | ...)DTR. This contribution has to be computed
in a separate baking step for each DLS. In our implementation we
simply reuse the existing series-expansion baker. Any light in a
dynamic light set is ignored in the base bake and a separate pass is
run with just the relevant lights enabled.

At run-time, each DLS has an associated blend weight, . This
weight is computed as the average strength of the lights in the light
set. For example, consider a dynamic light set Syy containing two
lights illuminating a hallway each at full strength. When one of
them is shot out (its strength set to 0), wy now equals 0.5, halving
the direct lighting contribution of both lights in the light set.

The final lighting used for shading, £, is then just a linear combi-
nation of the base lighting, £Lp, and each of the dynamic light set
contributions, S;, multiplied by their respective weight w;

.£=.£B+Zwi'3i. (2)
S;eS

Note that in levels with no dynamic light sets present, this is equiva-
lent to our static lighting system. As described so far, the approach is
conceptually simple and closely related to the technique presented
by Oztiirk and Akytiz [2017]. Unfortunately, it is prohibitively ex-
pensive and in the following we will discuss how we limit the
performance impact and scale our system to hundreds of DLSs for
single levels.

3.2 Minimal overhead via sparse lighting storage

A major performance concern that we have to address is that, in
theory, each dynamic light set has to compute and store lighting
data for every receiver in the level. Afterall, even though a light’s
contribution falls off with the square of the distance to the light,
it does contribute some light for any given distance. This means,
that apart from lights which are fully enclosed, any light might
contribute to any receiver in the level. Storing the complete set
of data is prohibitively expensive for maps with more than a few
dynamic light sets. On large maps it would take multiple gigabytes of
memory and make our technique completely intractible on current
hardware. Luckily, in practice light sets only contribute significantly
to a very limited region as shown in Fig. 3. To take advantage of this
we use a sparse data structure to store lighting values for dynamic
light sets. The base bake runs first and still stores data for all receivers.
To find relevant receivers, each dynamic light set computes direct
lighting and two bounces via our series-expansion baker. Then, the
mean indirect intensity of the texels lit directly by the sources is used
to calculate a threshold (in practice, we use 1% of the mean). Any
texels either lit directly or with intensity higher than that threshold
are stored in the update records for a given light set. This limits
both the final memory required and also the precomputation time,
where the final gather has orders of magnitude more rays to sample.

3.3 Fast run-time combination of light sets

The sparse lighting storage we introduced for dynamic light sets
reduces memory usage at the cost of run-time complexity. We
want to be able to efficiently update our lighting representation
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Fig. 4. The number of DLS overlaps (shown here for ESTATE) per texel grew
in the last production. Still, most receivers are only influenced by a small
number of light sets allowing us to reduce the memory footprint of our
method by several orders of magnitude.

(i.e. lightmaps, LLGs and the GLG) when the state of a dynamic
light set changes and to do so we have to keep the followig set of
constraints in mind. Our implementation has to be efficient on the
GPU, meaning variable length data structures and heavily divergent
code are problematic. We also have to keep any memory overhead
of incidental data structures low. For example, for lightmaps, the
lighting data for a texel is heavily compressed and only takes 8 bytes
to store, whereas its location in the sparse lightmap generally takes
up 4 bytes. This means doing a compute shader pass to blend in
each dynamic light set separately, where the addresses need to be
redundantly stored would be problematic. Storing a blend count
and starting address per texel would similarly be inefficient, both in
terms of memory usage and divergent GPU behavior. Low-end PC
hardware does not support read-modify-write operations for the
texture formats we are using, which means any multi-pass method
needs to accumulate into a scratch buffer before writing to the final
resource. We also did not want to differentially encode the lighting,
where precision problems could become an issue. Finally, a light set
being turned off is a common case and optimizing for that is impor-
tant. In the following we will describe two iterations on our solution
to this problem, which were implemented in two consecutive games.

In the first game, the lighting artists were instructed to keep
overlaps to less than 3 per receiver if possible and to not use more
than a single digit number of DLSs per level. They mostly kept to
the former restriction, but the largest level used 26 light sets. To
make the common cases fast, shaders were specialized for “all zero”
blends and for up to 3 overlaps. If a texel was overlapping with
more than three light sets, we split them into batches do blends into
a scratch buffer. Most indices were implicit based on sorting the
data and a dispatch was done for each unique combination of light
sets, i.e.: All texels that had to blend light sets A, B, and C where
dispatched together, while the set of texels blending light sets B, D,
and E were processed in a separate dispatch.

In the second game, light sets were used much more aggressively
and the most challenging map had 132 DLSs and up to 16 overlaps
(see Fig. 4). To test performance we forced every set to be updated
ever frame, and the shaders we used for the first game took 20 ms
to update lighting on that map. The large number of basis func-
tions and much higher frequency of overlaps caused the number
of unique blends to be significantly larger. We eliminated the fall
back shader, and created optimized compute shaders for 1-8 blends.
We also aggregated all dispatches with less than 8 blends and either
invoked them with shaders that can not skip work with zeroed basis
functions, or put the data into the slower fall back shaders, one for



5-8 blends and one for 9-16. This removed all read-modify-write
shaders, that required GPU cache flushes, and drastically reduced
the number of dispatches, bringing execution time down to under
2 ms. In practice, we run dynamic lighting updates asynchronously
on the GPU, filling gaps in utilization, meaning that overall frame-
times do not increase.

4 MULTI-STATE GEOMETRY

The dynamic lighting system described in the previous section
shipped without any further modifications. Motivated by its success
we sought to extend it to more complex interactions. Following
the same game design driven methodology as before we decided to
tackle the specific issue of opening and closing doors. For context,
in first-person shooter campaigns doors often act as a way to con-
trol player progress. By letting non-player characters unlock doors,
game designers can set the pace of the story and guide the player
through complex levels. This means that the player’s attention is
quite often directed towards an opening door. In levels with dark
indoor rooms and bright sun-lit exteriors this poses a challenge for
lighting artists as the light flowing through the door is significant
(see Figure 5). Up to now artists had to decide whether to keep the
door closed in the baking process (leaving the room dark even when
the door is opened during gameplay), or remove it (and ending up
with light leaking through the closed door). They could add scripted
run-time lights to “cheat” the bounce, but this is both time con-
suming and expensive. In the following we will describe how we
extended the dynamic light set system to allow for dynamic doors
without excessively impacting bake-time performance.

Fig. 5. Left: Only base bake. Right: Lighting flowing through door.
In many scenarios the indoor lighting is dominated by the light flowing

through the door once it is open, making it an important effect to compute.

4.1 Doors as dynamic light sets

One of our goals (G.3) is to keep the run-time implementation as
simple as possible. Since we invested in an efficient implementation
of dynamic light sets, we wanted doors to reuse as much as possible.
The challenge was to express the lighting change that happens when
opening a door as an additive component of the base lighting. We
would like to arrive at one set of contributions per door, Sp, that
can be controlled linearly by a weight wp which is computed at
run-time based on the current “opening angle” of the door.

Preliminary assumptions. To achieve this we make several simplify-
ing assumptions. We reduce the complex non-linear lighting change
that happens when the door moves through the scene to two states:
“closed” and “open”. In the “closed” state, the door model is placed
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in its completely closed position, while in the “open” state we com-
pletely ignore the model. Another option would be to place it in
some “open” position, but many of the doors in our levels open both
outwards as well as inwards and do not have a well defined “open”
position. Additionally, we disregard any light bouncing off the door
in its closed state. Computing it would necessitate removing light as
the door opens, which is not directly compatible with our dynamic
light set system. While there are ways to achieve this relatively
easily, we did not find the missing bounce light to be significant.
Finally, while baking dynamic lighting in a level with multiple doors
or dynamic light sets we have to make a choice about the state of
every other interactive element in the scene. This was not a problem
with dynamic light sets themselves. There, lighting is linearly addi-
tive and the contribution of any individual light set is not affected
by whether another light is enabled or not. But in the case of doors,
whether a door is open or not non-linearly affects light propagation
from both dynamic light sets as well as other doors. To get correct
results for n DLSs and m doors, we would have to bake all (1 +n)2™
combinations of states, but this quickly becomes intractable. Doors
are often relatively far apart. So at the point of shipping the last
game using this technology we assumed that for each dynamic light
set and door bake, that all other doors are closed. This brings down
the number of combinations to just (n + m + 1). Of course, all of
these simplifications lead to artifacts in some situations, which we
will discuss in Section 6.2 along with possible solutions.

Describing door paths. To reason about our problem we extend the
path notation introduced in Section 2 and we will use P to indicate
a door in its closed state. As a first step, we identify all the paths
that interact with the door at any point. That is, paths of the form

door interactions
—_——

LyD* (PD*)* D'R . (3)
—— S——

emitter side receiver side

To separate out any light contributions that the door might have,
we give it an albedo of 0 in the base bake, removing any paths that
interact with it. This allows us to run the base bake as usual, com-
puting any lighting which does not interact with the door efficiently.
We are now left with the task of handling the remaining paths.

= - =
[ @ \*:' :ol
N f >
- B .
o - ! v

(@) (b) ©
Fig. 6. We compute the lighting flowing through the door directly (a) by
sampling points on its bounding box and casting rays towards it and one
bounce of indirect door lighting for each receiver by steering final gather
rays (b) towards regions of the room that receive strong direct lighting
through the door (c).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2020.



8 « Dario Seyb, Peter-Pike Sloan, Ari Silvennoinen, Michat lwanicki, and Wojciech Jarosz

4.2 Efficient sampling techniques

In the last section we were able to very narrowly define which parts
of path space we would like to compute lighting for. The naive
approach to do so would be to trace paths starting at each receiver
in the level and only count contributions from paths that interact
with the door. This would give us the correct result, but doors are
usually small compared to the size of the level and the probability
of any given path hitting a particular door is low. To efficiently
compute the paths that do interact with the door we have to guide
them towards it. While general path guiding methods [Hey and
Purgathofer 2002; Jensen 1995; Miiller et al. 2017, 2016; Vorba et al.
2014] could be used and we even use the technique by Silvennoinen
and Sloan [2019] during the base bake, there is an opportunity
to take advantage of the more constrained structure of the door
paths. To reduce bake times, we limit ourselves to a certain subset
of paths which we observed to have the highest contribution to the
overall lighting and we show these in Fig. 6. Namely, we compute
any lighting flowing directly through the door and its first bounce.
Hence, we want to both guide gather rays towards the door directly
and towards areas that are illuminated strongly through the door.
Note that here directly through the door is not equivalent to direct
lighting. That is, in addition to connection to light sources, we also
want to take bounce lighting from geometry on the other side of
the door into account. Luckily we can use much of the information
computed during the base bake to do so. For example, when a ray
shot through the door hits a lightmapped model on the other side,
we can simply sample the stored indirect lighting.

The door as an area light source. For receivers close to the door,
many contributing paths are of the form LyD*PR. Arriving directly
from the emitter side, with no bounce on the receiver side as shown
in Fig. 6 (a). For receivers on the floor close to the frame, the door
subtends a large solid angle. In these cases the door opening forms
a (complex) area light source. To compute this contribution we use
a stratified sampler to draw points on the door’s oriented bounding
box and cast rays towards them. The larger the subtended solid
angle of the door, the more rays we allocate towards this part of
the integral. This is similar to portal sampling strategies used in
offline rendering [Bitterli et al. 2015], but in addition to guiding
rays towards the portal, these methods also take into account the
directional distribution of illumination flowing through the portal.
Unfortunately that is very complex in our scenario. As opposed
to sampling environment maps, the illumination arriving at the
receiver depends not only on the direction but also on its position
relative to the portal. We tried using light field importance sampling
strategies [Lu et al. 2014] to better distribute samples on the door’s
bounding box, but found the difference in variance to be minimal.

Clustered shadow photons for path guiding. The other major part
of the integral is one-bounce indirect lighting flowing through the
door. That is, paths of the form LyPDR, shown in Fig. 6 (b). In
particular we noticed that we had many scenarios where opening
the door would reveal a bright patch of sunlight inside the room
and the bounce lighting off this patch would dominate the door
lighting. To effectively sample this lighting, we employ a technique
inspired by shadow photons [Jensen 1996]. In a preprocess step we
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uniformly sample points on the bounding box of the door. For each
sample point we send a shadow ray towards a randomly chosen
light source!. If the shadow test
succeeds we know that this light
contributes to the light flowing
through the door and will hit a sur-
face inside the room. We can then
cast into the opposite directing,
find the corresponding hit point
inside the room, and deposit a shadow photon. This, effectively,
gives us a “photon map” of direct light occluded by the door.
During the gather step we want to send rays towards regions
where the density of photons is high, but we additionally need to
send out a general gather ray to not miss any part of the integral.
To apply multiple importance sampling (MIS) [Veach and Guibas
1995], or even just basic integral splitting, we need to be able to
tell whether a uniform gather ray could have been generated by
our guiding strategy. This is difficult and expensive if we represent
illuminated regions with photon points. To simplify the problem
we cluster the shadow photons at the end of the preprocess step
into oriented bounding boxes.
This means that we can send out
thousands of photons to get a
good approximation of the light
falling into the room and then
reduce that information down to
a few (12 in our implementation)
bounding boxes that roughly cover areas with strong direct light.
We can now treat these bounding boxes as “area light sources” for
the purpose of ray guiding. That is, we do not use them to compute
lighting directly, as is done in some many-light methods [Luksch
et al. 2013], but rather as a proxy to guide gather rays in directions of
high contribution. This allows us to accurately combine the guided
directions (red) with the uniform hemisphere sampled ones (teal) by
computing an intersection with
the bounding boxes. If a uni- | )
. 4
formly sampled ray intersects é
one of the bounding boxes (red- |
teal striped) we know that we
could have generated it with the ¢
guiding technique and we can . :
compute the corresponding MIS weight. Since we have a small
set of boxes, this is fast, even without an acceleration structure. Of
course, using the bounding boxes means that the approximation of
importance is fairly rough and we might miss some features of direct
light. We also do not take visibility into account and in large rooms
containing a lot of models, many of the importance-sampled rays
might not reach the patches of light. In practice, we have not found
this to be a big concern, especially in combination with computing
influence regions. Since we combine our guiding strategy via MIS
with uniform hemisphere sampling, these issues do not bias our
estimator and only increases variance in failure cases.

!In practice we only consider primary and static lights here, but this could be easily
extended to emissives as well.



Direct light culling. To further speed up the baking process we use
the bounding boxes computed from shadow photons in an addi-
tional way. For direct lighting through the door, we need to evaluate
all lights in the scene, in the-
ory. Most of them will not con-
tribute and in the general case,
culling them is a difficult prob-
lem [Dachsbacher et al. 2014].
Keeping track from which light
the shadow photons in each
bounding box originated, we construct a list of lights per bounding
box. When evaluating shading, we find the bounding box the shade
point is in and only use the lights associated with that box. This
might mean that we miss some lights if the bounding boxes are
too tight. We artificially inflate the bounding boxes to alleviate this.
Additionally, artifacts won’t be as visible since we only use this
lighting contribution while computing bounce light.

5 EVALUATION AND RESULTS

We evaluate our system by thoroughly documenting its performance
characteristics in a variety of conditions. For a larger set of images
and a video showing our system in practice, we refer the reader
to our supplemental material. Our intention is to show how the
system behaves in practice and hence all the timings and memory
statics we show are taken from production content that shipped in
a recent game. Table 1 gives an overview of the performance of our
system. Note that many levels contain tens of dynamic light sets,
while doors are used less often. This is because artists had multiple
production cycles to explore DLSs while the door technology came
in late during the last production and was only used in the specific
situations it was requested for.

Bake-time performance evaluation. Our levels typically cover multi-
ple square miles of terrain and are filled with buildings and props.
Multi-hour bake times are not uncommon for environments of this
scale, even in our previous static baking system. These times are for
the maximum quality setting, as used in the shipping game. During
iteration, artists tend to use a lower setting that still produces repre-
sentative, if somewhat noisy, results with a correspondingly faster
bake.

Run-time performance evaluation. The run-time optimizations we
presented in Section 3 had a large impact on how many light sets
artists could use per level. While on the first game that used the
dynamic light baking system, they were instructed to keep light set
counts in the single digits for each map, by the time the last game
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shipped we were able to support hundreds of DLSs with little impact
on run-time performance. We measured the performance overhead
of our system on multiple maps. Under normal gameplay conditions,
we observed that dynamic lighting had no impact on overall frame
time. This is due to the fact that the workload is small and performed
on the GPU asynchronously, filling gaps in utilization left by other
tasks. Even when forcing all light sets to update every frame (which
does not happen in practice) and forcing synchronous execution
(poorly utilizing the GPU), dynamic lighting updates take at most
1.47 ms on our largest production map.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK

The system we have described performs well, fulfills the criteria we
laid out in the introduction and is used in several released as well
as upcoming AAA games. In the following we will discuss some
historical perspective on the system, its current limitations, how
they restrict our use cases, and finally, how we plan to further evolve
the system in the future.

6.1 Historical evolution.

Prior to LLGs, we used to store directional lighting information at
every vertex of the non-lightmapped meshes. For detailed, finely
tessellated meshes, this provided great quality, but the memory
footprint and baking time was significant, since the lighting data
was unique for each instance. Alternatively, a single directional
radiance sample could be used for the entire mesh, but since no
self-shadowing information was available, the resulting quality was
poor. LLGs, with their dramatically reduced memory footprint, were
the first change we made explicitly to support dynamic lighting
elements in future games. We initially implemented LLGs under the
hood, in our baking code, to accelerate the baking of the per-vertex
lighting, which was used in the first game we shipped (2014). For
our second game (2016), we moved LLGs to the run-time, and in
our third game (2017)—the first to support dynamic updates—we
eliminated vertex baking all together. While artists were initially
worried about a potential quality loss, we were able to optimize
our LLG implementation to the point where we could match visual
quality at a fraction of the memory cost.

6.2 Limitations

There are several limitations to our system, some inherent in the
design and some due to choices in our particular implementation.
Many of the design-caused limitations are common in light baking
systems, and we already had to keep them in mind even before

Table 1. Performance and memory statistics for the levels shown in this paper. Run-time performance was measured on a PlayStation 4, while the bakes were
performed on a workstation with a recent 18-core CPU. Bake times are for fast / high quality.

Level Statistics

Performance Statistics

Level #LM Texels #LLG Probes # GLGProbes #DLS # Doors

Memory (no DLS) Memory (DLS) Bake (no DLS) Bake (DLS) Run Time (sync)

EsTATE 2,637,824 50,805 229,725 132 0
CONSULATE 3,276,800 32,783 229,250 61 0
TOWNHOUSED 4,194,304 16,524 151,408 24 1
SAFEHOUSE 2,363,392 77,110 232,617 14 3
YArRD 2,097,152 32,183 135,209 6 0

28 MB 77 MB 10 / 20 min 33 /133 min 1.47 ms
32MB 61 MB 9 /18 min 19/ 46 min 0.61ms
37 MB 50 MB 6/ 14min 11/ 31min 0.43ms
27 MB 41 MB 9 /18 min 12/ 34min 0.42ms
12MB 27 MB 5/ 9min 6/ 11min 0.21ms
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Fig. 7. Our system enables a variety of gameplay scenarios. For example here, the player can shoot out a light (left). The darkness makes enemies less accurate
(middle) but the player has access to night vision goggles (right), allowing them to progress.

introducing any dynamic elements. Most restricting is of course the
fact that level designers have to manually tag certain interactive el-
ements and dynamic lights. Adding an interactive element requires
re-baking the whole map, which can take multiple hours (see Ta-
ble 1). In practice, this is not a significant additional restriction, since
re-baking is common and is caused by many types of changes to
the map. While we touched on implementation specific limitations
throughout the paper, we recapitulate the most important ones here
and provide thoughts on how to lift them.

Door states and bounce lighting off the door. As discussed in Section 4,
we make several simplifying assumptions about the states a door
can be in and the states in which it is blocking light. Particularly,
we do not compute intersections with the door geometry in its open
state at all. This can lead to light leaks like the one shown in Fig. 8.
Fixing this is not hard and was simply deemed less important than
other tasks at the time. By choosing an “open” state for the door we
can include the model in the bake for the open door in the chosen
state. This will correctly compute occlusion.

An artifact that is harder to resolve is the missing bounce light
off the door when it is closed. This is because currently each door
adds exactly one set of lighting contributions. When it is closed, we
do not add any light, hence, no bounce light. We cannot naively
include it in the base bake either since then it would always be
present, even when the door is open. One solution we consider is to
let doors contribute an additional set of lighting. Then we could bake
the bounce light as one contribution and the light flowing through
the door as another and interpolate between them. For exactly two
states we can even simplify this back to one set of contributions.
Consider Sc as the light bouncing off a closed door, Sg as the light
flowing through it when it is open and wc, wo their corresponding

Fig. 8. Light leaking through the open door due to ignoring the door geom-
etry in the “open” state.
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individual states combination state

Fig. 9. When we compute individual lighting contributions for doors (left)
we can miss important effects that result from combination states (right).

blend weights. Since we linearly interpolate between the two states
we know that wc = 1 — wo and we can express the overall lighting
contribution by the door as Sp = (1 -w¢)-Sc +wo-So = Sc+wo -
(So — Sc). Since Sc is independent of the door’s run-time state, we
can add it into the base lighting and we are back to a single set of
light contributions per door. Unfortunately this optimization does
not generalize to more than two states per door.

Interactions between doors and dynamic light sets. In our system
as described in Section 4 each dynamic element stands by itself
and light interactions between them as necessitated by geometry
changes (e.g., due to doors opening) are not considered. This pro-
hibits correctly computing lighting in situations such as the one
shown in Fig. 9 where using the current method, we will never
compute the light that reaches the back wall of the second room.
Luckily there is a small set of extensions, which we have already
implemented since the last game shipped, that allows us to lift this
limitations. For each combination state that we want to include we
run another baking pass with the given combination of doors open
and dynamic light sets enabled. When the combination includes mul-
tiple open doors we have to make sure that any contributing path
interacts with all of them. We can use the techniques introduced in
Section 4.2 as they are to improve baking performance. Note that
we do not address the combinatorial explosion directly. Instead we
allow artists to select individual light sets and doors that should
participate in combinatorial effects and only include combinations
where the participating elements’ influence radii overlap.

6.3 Future work and outlook

We have only addressed diffuse lighting in this paper. Non-diffuse
interactions are handled by reflection probes, where low gloss mate-
rials directly integrate against the low frequency incident lighting as
an optimization. We use normalized reflection probes [Lazarov 2013]



which are divided by irradiance when computing them off-line, and
multiplied back after sampling the environment maps. It turns out
that just updating the baked lighting data generates plausible specu-
lar results, particularly for lighting changes. For geometry changes,
we should investigate other ways to update reflection probes in the
future. In future productions, we will likely extend the existing sys-
tem to handle more complex lighting changes. After lifting some of
the current limitations as described in the previous section, a simple
next step would be to generalize the technique we use for dynamic
doors to other similar scenarios. Supporting events such as walls
and ceilings getting destroyed will be straightforward and have a
large impact on our ability to support a wide variety of story-telling
and level-design needs. Finally, lower end platforms like mobile
phones will continue to have difficulty ray tracing complex scenes
and as AAA games seek to extend their target audience, we see
methods relying on precomputation being useful in the foreseeable
future.
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