

Volumetric Global Illumination At Treyarch

JT Hooker

Treyarch Senior Graphics Engineer

Volumetric Global Illumination

- GI in volume texture
- Lean texture data
- IBL baked from probes
- Convex blend shapes

Presentation Order

Where we started Evolution along the way Where we ended up

Traditional Approach: Lightmaps

Could be ok, but...

Works poorly on detailed

or intersecting geometry

Doesn't work at all on

dynamic geometry

Software ray-tracing and

shading takes forever

Results not visible

in world editor

Deferred Renderer

Reflections already present

So how do we apply deferred GI?

Reflection Probes as Diffuse Data

Render the Possibilities SIGGRAPH2016

 Higher Mips: convolved specular
 [DROBOT13]

 Lowest Mip: diffuse irradiance

Real time IBL

Occlusion Is A Problem

Visibility Is A Problem

- Where the probe doesn't see
- Looks like shadows

Irradiance Volume (татаяснико5)

Render a Reflection Probe Per Voxel?

138 Volumes × 40³ Voxels × 6 Faces \div 60 FPS \div 60 Seconds = 14,720 Minutes (≈ 10 Days)

Collect Colors From Reflection Probes

Re-project cube mapsCombine to fill holes

[BUEHLER01]

Render the Possibilities SIGGRAPH2016

In Practice

- 4096 rays per voxel
 15 neighbors considered
- Missed rays are inpainted

Re-Project From Existing Probes

Neighbor candidates sorted based on distance

What about spec?

Reprojection

 Angle and distance to surface defines a solid angle in the cube map

Sample area validated against depth pyramid

If visible appropriate mip sampled

Reprojection Caluclation

Reprojection Calculation

distFromUnitCube = $\sqrt{(1 + u^2 + v^2)}$; // Compensation for cube-map shape. angleOfVoxel = 4 * PI / numSamples; // Solid angle from voxel. inSqrt = 1 + distFromVoxel² * angleOfVoxel * (angleOfVoxel - 4PI) / (4 * PI² * distFromProbe²); angleOfProbe = 2PI * (1 - \sqrt{inSqrt}); // Solid angle from reflection probe. cubeRes = 1.0f / $\sqrt{(angleOfProbe * distFromUnitCube^3)}$; // Resolution needed for sample. mipLevel = clamp(mipCount - log2(cubeRes), 0, mipCount); // Mip level to use.

return mipLevel;

Biggest Benefit

- Hardware rendering
- Re-render to get bounces
- Only have to ray-trace and re-project once

1 Bounce

• Flat Color?

 Ambient / Highlight / Direction?

Second Order
 Spherical
 Harmonic?

- Ambient Cube!
 - BC6H Compressed

Volume Texture Layout

Performance Benefits

Only 3 samples

color = xVolume.SampleLevel(coord) * normal.x * normal.x +
 yVolume.SampleLevel(coord) * normal.y * normal.y +
 zVolume.SampleLevel(coord) * normal.z * normal.z;

Hardware trilinear filtering

Evaluation:

color[n] = normal² · float3(Xsample[n], Ysample[n], Zsample[n])

Light Leaking Is A Problem

Common Approach

-Adjust trilinear Based on normal [SILVENNOINEN15]

Our approach needs to be more reliable

More Voxel Data

Planes

Signed distance field

Bad artifacts

Solve With Shaping

Click To Size Boxes

Click To Add Boxes

Auto-parent on creation

Consider Backfaces

Complex Room Shapes

Solution: Convex Shapes

Multiface Volumes

Click to add and remove faces.

Render the Possibilities SIGGRAPH2016

Subtract Shapes CSG add Then subtract

Override Volumes Like priority Only two levels.

Runtime Implementation

1. Cull against volume AABB's to build a list of volumes

- 2. Per pixel calculate attenuation on visible volumes
 - Convex hull CSG

Groups of six planes either extended, combined or subtracted

Example GI Volume


```
struct PlaneGroup
   float4 planes[6]; // Groups of six planes.
   bool subtractive; // Per group, specifies whether it adds or subtracts.
   bool finished; // Per group, whether it should be combined with the previous.
struct GIvolume
   PlaneGroup *qroups;
planes[i].xyz = planeNormal;
planes[i].w = planeOffset;
planes[i] /= blendWidth; // Blend width is a scalar for how wide the blend is.
```


[6]+[6+6+...?

[6]+[4+4+...?

[4]+[4+4+...?

[8]+[2+2+...?

Shader Example


```
attenuation = 0;
groupAtten = 1;
for ( int group = 0; group < numGroups; group++)</pre>
   groupAtten *= saturate( dot( planes[group][0].xyz, pos ) + planes[group][0].w );
   groupAtten *= saturate( dot( planes[group][1].xyz, pos ) + planes[group][1].w );
   groupAtten *= saturate( dot( planes[group][2].xyz, pos ) + planes[group][2].w );
   groupAtten *= saturate( dot( planes[group][3].xyz, pos ) + planes[group][3].w );
   groupAtten *= saturate( dot( planes[group][4].xyz, pos ) + planes[group][4].w );
   groupAtten *= saturate( dot( planes[group][5].xyz, pos ) + planes[group][5].w );
   if(finished[group])
      if( subtractive[group] )
         attenuation = max( attenuation, groupAtten );
      else
         attenuation *= 1.0f - groupAtten;
      qroupAtten = 1;
return saturate( attenuation );
```


KDOP – k-sided Discrete Oriented Polytope

Pairs of plans or slabs Instead of individual planes

Runtime Implementation

3. Sample three ambient cube values depending on normal

4. Blend results between all volumes

Challenges

Problem: Geo Within Voxels

Solution: Smart Centers

Invalidate Near Geometry

Empty Space Skip

Careful Lighting Artistry

Auto Volumes? "Do-Everything Button"

Debug Tools

Volume Blending And Density

Volume Overdraw Per Tile

Reflections

Reflection Planes

[LAGARDE12]

Clever Artistry

Reflection Plane Parallax


```
float reflectionMip = ( 1 - gloss ) * numMips;
```

```
// as things get rougher "fade off" parallax correction
// by pushing out intersection planes
float minDist = saturate( ( reflectionMip - 2.5 ) / ( numMips - 2.5 ) ) * 100;
distanceToPlane = max( abs( distanceToPlane ), minDist );
```

float intersectionDist = abs(distanceToPlane / -dot(direction, plane.xyz));

Parallax Fade Out

Reflection Brightness Correction [LAZAROV13]

Reflection Brightness Correction

Brightness Correction

float maximumSpecValue = max3(1.26816, 9.13681 * exp2(6.85741 - 2 * mip) * nDotV, 9.70809 * exp2(7.085 - mip - 0.403181 * mip²) * nDotV);

float adjustedMaxSpec = diffuseGILum * maximumSpecValue;
float3 specLum = luminance(cubeMapSample);
float3 reflection = cubeMapSample *
 adjustedMaxSpec / (adjustedMaxSpec + speculum);

1. As good or better quality than light maps

2. Less than 2ms for reflections and GI

3. Works on all geometry

4. Less baking time with incremental baking

5. Baking is done in editor

6. Moving and changing GI

7. Loose connection between light and geo

1. Takes set up time

2. Training is hard

3. Either lower resolution

or more memory use in game

4. Need beefy dev machines

(48Gb RAM and 12Gb VRAM)

5. Development challenges

Special Thanks

Treyarch: Dimitar Lazarov – Original Idea Kevin Myers – Baking Code Everyone Else at Treyarch Activision Central Tech: Peter-Pike Sloan – Lots of Math Josiah Manson – Light Bake Features Angelo Pesce – Reflection Solutions

References

- [DROBOT13] DROBOT, M., 2013. Lighting Killzone: Shadow Fall, Digital Dragons
- [TATARCHUCK05] TATARCHUK, N., 2005. Irradiance Volumes for Games, GDC Europe
- [BUEHLER01] BUEHLER, C., BOSSE, M., MCMILLAN, L., GORTLER, S., COHEN, M., 2001. Unstructured Lumigraph Rendering, SIGGRAPH
- [MCTAGGART04] MCTAGGART, G., 2004. Half-Life 2 / Valve Source Shading, Game Developers Conference
- [SILVENNOINEN15] SILVENNOINEN, A., TIMONEN, V., 2015. Multi-Scale Global Illumination in Quantum Break, SIGGRAPH
- [LAGARDE12] LAGARDE, S., ZANUTTINI, A., 2012. Local Image-based Lighting With Parallax-corrected Cubemaps, SIGGRAPH
- [LAZAROV13] LAZAROV, D., 2013. Getting More Physical in Call of Duty: Black Ops II, SIGGRAPH