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Fig. 1. Indirect diffuse lighting from linear SH (left), hallucinated ZH3 (center, our contribution), and quadratic
SH (right) on a production map. Linear SH uses minimal storage but can have significant visual issues; in this
example, linear SH has negative lobes and color shifting under the railing and on the held knife, and does not
accurately represent the transmissive lighting on the tarpaulin. Quadratic SH is significantly more accurate
but also requires over double the storage per sample, making it expensive for spatially dense data. Hallucinated
ZH3 resolves the issues of linear SH while using the same storage and minimal extra computation, producing
a much closer match to the quadratic SH reference. ©Activision Publishing, Inc.

Spherical Harmonics (SH) have been used widely to represent lighting in games and film. While the quadratic
(SH3) and higher order spherical harmonics represent irradiance well, they are expensive to store and evaluate,
requiring 27 coefficients per sample. Linear SH (SH2), requiring only 12 coefficients, are sometimes used, but
they do not represent irradiance signals accurately and can have challenges with negative reconstruction. We
introduce a new representation (ZH3) that augments linear SH with just the zonal coefficient of quadratic SH,
yielding significant visual improvement with just 15 coefficients, and discuss how solving for a luminance
zonal axis can significantly improve reconstruction accuracy and reduce color artifacts. We also discuss how,
rather than storing the ZH3 coefficients explicitly, we can hallucinate them from the linear SH, improving
reconstruction accuracy over linear SH at minimal extra cost.
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1 INTRODUCTION
Interactive applications require efficient, compact representations of spherical functions. Spherical
harmonics (SH) are often used to represent radiance, irradiance, and transfer vectors, and provide
high reconstruction quality at relatively low storage and evaluation cost. Other representations such
as spherical Gaussians [Green et al. 2006; Neubelt and Pettineo 2015; Tsai and Shih 2006], wavelets
[Ng et al. 2003], and Ambient Dice [Iwanicki and Sloan 2017] can also provide high quality, but
are generally heavier in both storage and evaluation than low-order spherical harmonics, making
them impractical for low-end platforms like mobile phones. Lighter spherical radial basis functions
have also been used [McTaggart 2004] but have known limitations [Sloan 2008].
Spherical harmonics used for irradiance are generally either of the linear (SH2) or quadratic

(SH3) orders. Linear spherical harmonics use only 12 coefficients and four basis functions but can
be inaccurate, with the reconstructed lighting being low-frequency and prone to negative lobes,
while the quadratic spherical harmonics accurately represent irradiance but require 27 coefficients
and the evaluation of nine basis functions.
In this paper, we aim to approach the quality of quadratic SH at minimal extra cost over linear

SH. We do this by considering a subset of spherical harmonics: the zonal harmonics (ZH). In prior
work, zonal harmonics have been used to factor SH for fast rotations [Nowrouzezahrai et al. 2012],
prefilter environments maps [Soler et al. 2015], and represent deformable transfer [Sloan et al.
2005]. Our contribution focuses on irradiance reconstruction: specifically, we show that adding the
quadratic zonal (ZH3) basis function to linear SH can achieve much of the appearance of quadratic
SH. We investigate explicitly solving for and storing the ZH3 coefficient, adding one value per color
channel over linear SH. We also show how the ZH3 coefficient can be estimated from the linear SH
rather than stored, building on prior work [Joseph 2015] that hallucinates higher frequencies of
lighting based on the ratio between the linear and constant bands.

2 SPHERICAL HARMONICS
The real spherical harmonics are a set of orthonormal basis functions defined by

𝑌𝑚
𝑙

(𝜃, 𝜙) =
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𝑙
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(1)

where (𝜃, 𝜙) is a vector in spherical coordinates, 𝑃𝑚
𝑙

are the associated Legendre polynomials, and
𝐾𝑚
𝑙

are the normalization constants

𝐾𝑚
𝑙

=

√︄
(2𝑙 + 1) (𝑙 − |𝑚 |)!
4𝜋 (𝑙 + |𝑚 |)! .

The band index 𝑙 , where 𝑙 is a non-negative integer, and function index𝑚, where𝑚 is an integer
in [−𝑙, 𝑙] for band 𝑙 , uniquely identify individual spherical harmonic basis functions. A spherical
harmonic of order𝑂 (notated here as SH𝑂 spherical harmonics) consists of the first𝑂 bands and𝑂2

basis functions; that is, SH𝑂 includes all basis functions whose 𝑙 is between 0 and 𝑂 − 1. Spherical
harmonics of a certain order can also be identified by their highest polynomial degree; for example,
order 2/SH2, or linear, spherical harmonics consists of only linear polynomial basis functions, while
order 3/SH3, or quadratic, spherical harmonics include quadratic polynomials.
Since spherical harmonics are an orthonormal basis and least-squares encoding is therefore

expressed by projection, a function 𝑓 (𝑠) approximated as spherical harmonics has basis coefficients
given by the projection 𝑓𝑚

𝑙
=

∫
𝑆2
𝑓 (𝑠)Y𝑚

𝑙
(𝑠)d𝑠 . Reconstruction is given by 𝑓 (𝑠) = ∑

𝑓𝑚
𝑙
Y𝑚
𝑙
(𝑠), or,
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equivalently, 𝑓 (𝑠) = 𝑓 · Y(𝑠). Spherical harmonics are closed under rotation and can accurately
represent smooth functions using a small number of bands.
The spherical coordinate form defined in Equation 1 is convenient for symbolic computations

and evaluating analytic integrals, but is expensive to evaluate at run-time; in practice, SH are often
efficiently evaluated as polynomials of Cartesian coordinates on the unit sphere [Sloan 2013].

2.1 Zonal Harmonics
Zonal harmonics (ZH) are the subset of spherical harmonic functions for which only the zonal
(𝑚 = 0) coefficient for each band is non-zero. Any function that has circular symmetry in 𝑧 projects
into the zonal harmonics, and any spherical radial basis function (SRBF) can therefore be expressed
as a zonal harmonic oriented along the basis function’s axis.1

An arbitrary SH function 𝑓 and zonal SH function ℎ can be convolved in closed form using the
following equation [Sloan et al. 2005]:

(𝑓 ∗ ℎ)𝑚
𝑙

=

√︂
4𝜋

2𝑙 + 1
𝑓𝑚
𝑙
ℎ0
𝑙
=
𝑓𝑚
𝑙
ℎ0
𝑙

𝐾0
𝑙

. (2)

ZH coefficients, given by 𝑘𝑙 = ℎ0𝑙 /𝐾
0
𝑙
, are per-band scale factors applied when computing the

convolution of an SH with a zonal harmonic. The SH expansion of a ZH is given by applying the
convolution theorem to a delta function; you evaluate the SH in the direction of the zonal axis and
then multiply the ZH coefficients per-band.

Represented in the zonal frame, a zonal harmonic function will have zero for all non-zonal (𝑚 ≠ 0)
coefficients; as such, the integral of the product of two ZH functions can always be computed in 𝑂
operations, rather than the 𝑂2 operations required when using expansion to SH [Dubouchet et al.
2019]. In a coordinate system where the first ZH is aligned with 𝑧 = (0, 0, 1) and the second with
(sin𝜃, 0, cos𝜃 ) where cos𝜃 is the dot product of the two ZH axes, the convolution is given by∫

𝑆2
𝑓 (𝑠)𝑔(𝑠)d𝑠 =

∑︁
𝑙

𝐾0
𝑙
Y0
𝑙
(𝜃, 0) 𝑓𝑙𝑔𝑙 . (3)

2.2 Linear Spherical Harmonics (SH2)
The linear spherical harmonics have only four basis functions: the constant DC term 𝑓0 and a scaled
function corresponding to each of the cardinal axes −𝑦, 𝑧,−𝑥 :

Y(𝑥,𝑦, 𝑧) =
[

1
2
√
𝜋

−
√︃

3
4𝜋𝑦

√︃
3
4𝜋 𝑧 −

√︃
3
4𝜋 𝑥

]
. (4)

Storing a coefficient per basis function per color channel, linear SH requires twelve coefficients for
RGB colors.
SH2 are always a zonal harmonic when expressed in a coordinate frame oriented along the

"optimal linear direction" (𝑥,𝑦, 𝑧) =
(−𝑓 11 ,−𝑓 −11 ,𝑓 01 )

∥ 𝑓1 ∥ [Sloan et al. 2005]. In this coordinate frame,
the zonal SH coefficient 𝑙01 is given by the length of the L1 (𝑙 = 1) band ∥ 𝑓1∥, and the 𝑙−11 and 𝑙11
coefficients are zero.

1Common examples of SRBFs include the normalized cosine lobe for irradiance convolution, hemispheres, and cones.
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2.3 Quadratic Spherical Harmonics (SH3)
The quadratic spherical harmonics add an additional five basis functions:

Y2 (𝑥,𝑦, 𝑧) =
[√︃

15
4𝜋 𝑥𝑦 −

√︃
15
4𝜋𝑦𝑧

√︃
5

16𝜋 (3𝑧
2 − 1) −

√︃
15
4𝜋 𝑥𝑧

√︃
15
16𝜋 (𝑥

2 − 𝑦2)
]
. (5)

Quadratic spherical harmonics represent irradiance with an average error of less than 3% [Ra-
mamoorthi and Hanrahan 2001] and are often used as a reference for compact environment lighting.

3 ZONAL QUADRATIC SPHERICAL HARMONICS (ZH3)
Extending from linear to quadratic spherical harmonics requires adding an additional five co-
efficients per color channel, more than doubling the storage and evaluation cost; this can be a
particular issue for spatially dense data. We introduce ZH3, which extends linear SH by adding
just the quadratic zonal coefficient expressed in the linear SH coordinate frame. ZH3 can exactly
represent zonal SH3 signals (such as the SH3 representation of a point or sphere light) and signifi-
cantly improves reconstruction on a range of other signals (Figures 2 and 3). When compared with
quadratic SH, ZH3 often delivers a very similar appearance while requiring four fewer coefficients
per channel; furthermore, using a ratio-based encoding scheme (Appendix A.1), RGB ZH3 requires
only 16 bytes of storage compared with 28 for quadratic SH.

3.1 Solving for ZH3
The quadratic ZH coefficient 𝑘2 in a given zonal frame can be found through a least-squares fit to
the quadratic (𝑙 = 2) band. Given a direction d𝑙𝑖𝑛 (taken to be the optimal linear direction from the
linear spherical harmonic), the five quadratic basis functions evaluated in that direction 𝑞 = Y2 (d𝑙𝑖𝑛),
and the target basis coefficients 𝑓2, the squared error 𝐸 is given by

𝐸 = (𝑘2𝑞 − 𝑓2) · (𝑘2𝑞 − 𝑓2) (6)

= (𝑘2)2 (𝑞 · 𝑞) − 2𝑘2 (𝑞 · 𝑓2) + 𝑓2 · 𝑓2 . (7)

Differentiating with respect to 𝑘2, you get

d𝐸
d𝑘2

= 2𝑘2 (𝑞 · 𝑞) − 2𝑞 · 𝑓2, (8)

where 𝑞 · 𝑞 = 5
4𝜋 . Solving for zero results in

𝑘2 =
4𝜋
5
𝑞 · 𝑓2. (9)

Equivalently, the SH 𝑙02 coefficient in this coordinate frame is given by

𝑙02 = 𝐾0
2𝑘2 =

√︂
4𝜋
5
𝑞 · 𝑓2. (10)
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Reference SH2 ZH3 (Lum. Axis) Hallucinate (C.F.) SH3

Ennis RMSE = 0.556 RMSE = 0.110 RMSE = 0.159 RMSE = 0.095

Grace RMSE = 0.0896 RMSE = 0.0140 RMSE = 0.0420 RMSE = 0.0132

Pisa RMSE = 0.0244 RMSE = 0.0204 RMSE = 0.0214 RMSE = 0.0051

Uffizi RMSE = 0.333 RMSE = 0.078 RMSE = 0.085 RMSE = 0.039

Wells RMSE = 0.0552 RMSE = 0.0344 RMSE = 0.0343 RMSE = 0.0076

Fig. 2. Comparison of irradiance reconstruction for SH2, ZH3 (using a solved-for shared luminance axis),
curve-fit ZH3 hallucinate, and SH3 on a range of environment maps [Debevec 2001; Vogl 2010].

3.2 Luminance Blend
Solving directly for the zonal coefficient along each color channel’s zonal axis can lead to undesirable
artifacts and color shifts if the zonal axes are not aligned (Figure 4). These artifacts can be avoided
if we loosen the zonal constraint and introduce a new, shared axis, given by the optimal linear
direction of the luminance spherical harmonic (a weighted average of the RGB SH). The new axis
is used exclusively for the zonal L2 (quadratic) term, and we solve for and evaluate the L2 zonal
coefficient for each channel along it. This carries the additional benefit of reducing the runtime
cost of evaluation, since only one normalized axis need be computed rather than three. In some
cases, this may also lower the error, since the optimal axis for the zonal L2 basis is not necessarily
aligned with the L1 band’s axis; the shared luminance axis may be a better fit.

3.3 Solving for the ZH3 Axis
A key property of ZH3 is that the zonal axis is implicitly determined from the linear spherical
harmonic. However, the zonal axis given by the least-squares linear spherical harmonic may
not result in the lowest error representation of the overall lighting, and it is often beneficial to
instead solve for the axis that results in the lowest reconstruction error when considering both
the L1/linear and L2/quadratic zonal terms (Figure 5). Put another way, if there is a direction that
is well represented by an L2 zonal lobe, and the contribution of the L2 band is significant, then
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Fig. 3. RMS error for irradiance reconstruction on a range of environment maps [Debevec 2001; Vogl 2010].

0.177, 0.167, 0.174
(a) SH2

0.176, 0.150, 0.122
(b) ZH3, Per-Channel Axis

0.169, 0.144, 0.148
(c) ZH3, Luminance Axis

RGB RMSE
(d) SH3 (Reference)

Fig. 4. Irradiance reconstruction from SH2, ZH3 without and with a shared luminance axis, and SH3, on a
light probe from a production map. The shared luminance axis resolves color artifacts in the per-channel axis
version and decreases the error in the red and green channels, resulting in a closer appearance to SH3.

moving the L1 axis toward the most favored direction for the L2 band can result in lower error
overall, even though it will increase the error for the L1 band.
Following the method of [Sloan et al. 2005], we perform a BFGS-based search for the optimal

direction. The solve parameters are the per-channel L1 SH coefficients, with derivatives taken with
respect to a spherical harmonic error function 𝐸:

𝐸 = ∥ 𝑓1 − 𝑡1∥2 + ∥ 4𝜋
5

(Y2 (A(𝑓 )) · 𝑡2) Y2 (A(𝑓 )) − 𝑡2∥2, (11)
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0.347, 0.343, 0.337
(a) SH2

0.323, 0.320, 0.317
(b) ZH3, Opt. Lin. Axis

0.061, 0.060, 0.060
(c) ZH3, Shared Axis Solve

RGB RMSE
(d) SH3 (Reference)

Fig. 5. Irradiance reconstruction from SH2, ZH3 with an axis given by the unmodified linear SH, ZH3 with a
solved-for zonal axis, and SH3, on a light probe from a production map. Solving for the zonal axis produces a
major improvement in appearance and accuracy in this case; since the contribution of the L1 band is relatively
small, refitting it based on the L2 band is highly beneficial.

where 𝑓 is the linear SH being solved for, A(𝑓 ) is the axis from the linear spherical harmonic (e.g.
the optimal linear direction), 𝑡 is the target irradiance SH, and 4𝜋

5 (Y2 (Axis(𝑓 )) · 𝑡2) is the ZH3
coefficient for that axis. In other words, the error is the squared difference between the target and
the SH expansion of the ZH3, where the 𝑘2 coefficient is given by a least-squares fit to 𝑡 (Equation
9) along the axis given by the linear SH 𝑓 . The L0 coefficient is invariant and is given by 𝑓0 = 𝑡0.
For separate per-channel axis solves, it is sufficient to solve only for the axis (rather than the

linear SH coefficients) and find the least-squares zonal coefficients for both L1 (by simply projecting
onto the axis) and L2 (from Equation 9) from that. However, when solving for a shared luminance
axis, the zonal L1 coefficients also determine the luminance axis for the L2 band; a greater magnitude
for the L1 band for a channel will weight the luminance axis towards that channel. Given that,
we choose to parameterize the error over the full L1 band coefficients, implicitly determining the
luminance axis, rather than over the shared axis and per-channel zonal L1 coefficients. We provide
a full expansion of the derivatives and axis function in Appendix C.

3.4 Hallucinating the ZH3 Coefficient
Rather than storing the ZH3 coefficient, an alternative approach is to instead hallucinate it from the
linear spherical harmonic, effectively modifying the reconstruction algorithm (Listing 1). Modifying
irradiance reconstruction from linear SH is not a novel idea; linear SH are prone to negative
lobes, color shifting, and fail to accurately represent irradiance from directional or point lights,
and so prior work [Joseph 2015] introduced the Geomerics algorithm to address these issues. The
Geomerics algorithm always preserves the first moment (DC) of lighting and effectively hallucinates
higher-order terms from the ratio of the linear SH coefficients to DC; however, it doesn’t preserve
the second moment (linear SH) and can be overly bright and flat when the ratio is low [Sloan and
Silvennoinen 2020] (Figure 6). If, instead, we hallucinate a ZH3 coefficient, we preserve the first
two moments of lighting,2 and in practice can match the reference more accurately.
2The idea of preserving multiple moments has been used in applied physics [Wyman et al. 1989] to approximate scattering
parameters and presented in the graphics literature [Zhao et al. 2014].
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0.133, 0.140, 0.182
(a) Geomerics

0.047, 0.058, 0.101
(b) ZH3 Curve-Fit Hallucinate

RGB RMSE
(c) Reference

Fig. 6. Geomerics tends to over-brighten the lighting, whereas ZH3 hallucinate more accurately reconstructs
the overall tonality of the reference. The lighting environment is an SH3 probe taken from a production map.

Hallucinating higher-order terms can be easily motivated by real-world data. Linear SH is the
truncation of a signal, and in almost all cases the average truncated data is not best represented by
zeroes; that is, the average higher-order coefficients for real-world lighting are non-zero when the
linear band is non-zero (Figure 7). Our approach is to predict the ZH3 coefficient from the ratio
of linear to DC; specifically, given a zonal axis from the linear SH, a DC/𝑓0 coefficient, and the 𝑓 01
coefficient for the zonal term along that axis (i.e. the length of the L1 band vector), we consider
how best to hallucinate a higher-order term or terms from that 𝑓 01

𝑓0
ratio.

3.4.1 Ambient & Directional. The most trivial model is to consider the L1 SH as the result of an
ambient and directional light, where the direction is given by the optimal linear direction from
the L1 SH. The ratio of zonal L1 term to DC for a directional light is given by

√
3; therefore, the

intensities of the ambient and directional lights are given by

𝐼𝑎𝑚𝑏 = 2
√
𝜋

(
𝑓0 −

∥ 𝑓1∥√
3

)
, (12)

𝐼𝑑𝑖𝑟 =

√︂
4𝜋
3
∥ 𝑓1∥. (13)

If this is treated as an analytic ambient and directional light, this carries the downside of there
being no lighting variation per color channel in the hemisphere opposite the directional light, since
that lighting is entirely provided by the ambient term. However, if we restrict ourselves to inferring
the 𝑓 02 coefficient in the zonal frame from the directional light, we gain lighting variation at the
cost of possible ringing. The hallucinated coefficient in the zonal frame is given by

𝑓 02 =

√
15
3

∥ 𝑓1∥. (14)
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Fig. 7. Ratio of L1 to L0 lighting coefficients (horizontal axis) against the ZH3 irradiance coefficient (vertical
axis). The gray points are real-world values from a set of production maps; the curves are three discussed
hallucinate models. There is a clear overall trend, indicating that the average ZH3 coefficient is non-zero and
that the ratio is a reasonable means to estimate it.

Adding this hallucinated 𝑓 02 coefficient results in a decrease in error of over 17% on average on a
set of production maps compared to linear SH. Since our reference is quadratic SH, it is difficult to
determine whether an analytic ambient and directional light model would result in lower error
than the SH representation; however, this is an interesting avenue for future work.

3.4.2 Spherical Lights. Spherical lights are ZH functions with closed-form ZH coefficients. They
can be represented using trigonometric functions [Sloan 2008] of 𝜎 , the angle of the opening, or as
a function of radius 𝑟 of a sphere and distance to the center 𝑑 [Yuan et al. 2012]. These equations
work for 𝜎 ≤ 𝜋

2 and represent constant illumination from a cone that subtends a given angle:

𝑓0 =
√
𝜋 (1 − cos𝜎),

𝑓 01 =
√
3𝜋
2 sin2 𝜎,

𝑓 02 =
√
5𝜋
2 cos𝜎 sin2 𝜎.

(15)

The ZH coefficients (including per-band scaling coefficients) are

𝑘0 = 2𝜋 (1 − cos𝜎),
𝑘1 = 𝜋 sin𝜎2,
𝑘2 = 𝜋 cos𝜎 sin𝜎2.

(16)

The ratio 𝑝 =
𝑓 01
𝑓0

of the coefficients for a spherical light in a zonal coordinate frame is

𝑝 =

√
3𝜋
2 sin2 𝜎

√
𝜋 (1 − cos𝜎)

=

√
3
2

sin2 𝜎
(1 − cos𝜎) . (17)

Using the trigonometric identity sin2 𝜎 + cos2 𝜎 = 1 and the fact that 1 − 𝑥2 = (1 − 𝑥) (1 + 𝑥), the
ratio simplifies to

𝑝 =

√
3
2
(1 + cos𝜎), (18)

yielding an expression for cos𝜎 :

cos𝜎 =
2
√
3

3
𝑝 − 1. (19)
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This expression can either be used to directly evaluate the irradiance from an analytic spherical
area light [Snyder 1996] or to hallucinate the zonal L2 coefficient. In practice, adding this hallucinated
𝑓 02 coefficient results in almost identical error (a less than 0.1% decrease) on our test maps compared
to linear SH, although the appearance is subjectively improved due to the added detail.

3.4.3 Curve Fit. It can be derived that the hallucinated ZH3 coefficient from the sphere area light
is simply a quadratic in the ratio 𝑝 =

𝑓 01
𝑓0

𝑓 02 =

(
2
√
5

3
𝑝2 −

√︂
5
3
𝑝

)
𝑓0, (20)

where 𝑓 02 is the computed radiance zonal L2 coefficient for the zonal axis.
While the sphere area light model isn’t a good fit for our real-world data, it does raise whether

there are coefficients for this quadratic that better fit actual lighting data. We compute a quadratic
curve fit to the radiance coefficients for our input lighting environments:

𝑓 02 =
(
0.6𝑝2 + 0.08𝑝

)
𝑓0 . (21)

Using these parameters to hallucinate the ZH3 coefficient reduced error by over 23% on average
on a range of test maps compared to linear SH.

3.4.4 Luminance Zonal Axis. As with a stored ZH3 coefficient, color fringing may occur if the
zonal axes diverge, although this is more rare than with explicit ZH3. The strategy of using a shared
luminance axis (Section 3.2) is also applicable for hallucinated zonal coefficients; in that case, the
ratios are computed using the projection of the L1 coefficients onto the new axis (equivalent to
computing the 𝑓 01 coefficient for a coordinate system aligned along that axis) (Listing 1). Using
the luminance axis also yields a reduction of error of over 23% on average compared to linear SH,
although the reduction is slightly less (by 0.2%) than for per-channel axes.

Listing 1. Irradiance reconstruction from linear SH using curve-fit ZH3 coefficients.

float3 SHHallucinateZH3Irradiance(float3 sh[4], float3 direction) {
// Use the zonal axis from the luminance SH.
const float3 lumCoeffs = float3(0.2126f, 0.7152f, 0.0722f); // sRGB luminance.
float3 zonalAxis = normalize(float3(−dot(sh[3], lumCoeffs), −dot(sh[1], lumCoeffs), dot(sh[2], lumCoeffs)));

float3 ratio = 0.0;
ratio.r = abs(dot(float3(−sh[3].r, −sh[1].r, sh[2].r), zonalAxis));
ratio.g = abs(dot(float3(−sh[3].g, −sh[1].g, sh[2].g), zonalAxis));
ratio.b = abs(dot(float3(−sh[3].b, −sh[1].b, sh[2].b), zonalAxis));
ratio /= sh[0];
float3 zonalL2Coeff = sh[0] ∗ (0.08f ∗ ratio + 0.6f ∗ ratio ∗ ratio); // Curve−fit; Section 3.4.3

float fZ = dot(zonalAxis, direction);
float zhDir = sqrt(5.0f / (16.0f ∗ PI)) ∗ (3.0f ∗ fZ ∗ fZ − 1.0f);

// Convolve sh with the normalized cosine kernel (multiply the L1 band by the zonal scale 2/3), then dot with
// SH(direction) for linear SH (Equation 5).
float3 result = SHLinearEvaluateIrradiance(sh, direction);

// Add irradiance from the ZH3 term. zonalL2Coeff is the ZH3 coefficient for a radiance signal, so we need to
// multiply by 1/4 (the L2 zonal scale for a normalized clamped cosine kernel) to evaluate irradiance.
result += 0.25f ∗ zonalL2Coeff ∗ zhDir;
return result;

}
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4 DISCUSSION
Irradiance reconstruction using hallucinated ZH3 coefficients has been shipped in multiple com-
mercial video games, with the motivation initially being to improve lighting through translucent
surfaces over linear SH. While the shipped implementation uses per-channel zonal axes and a
sphere-light-derived model, we intend to switch to using a luminance axis (Section 3.4.4) and the
curve fit (Section 3.4.3) in the future. We have not shipped a stored ZH3 representation but are
investigating doing so: we currently use full quadratic SH as a world-space lighting representation,
where each SH probe uses 28 bytes of memory (Appendix A.1), and switching to stored ZH3 would
reduce our memory usage by almost half to 16 bytes per probe, which is particularly attractive for
mobile platforms.
It is worth considering the trade-offs between stored and hallucinated ZH3 coefficients. When

comparing the quantized representation from a performance standpoint, there’s very little to
separate them; the storage requirements of the ZH3 coefficients are minimal at only three bytes,
fitting naturally into a 16 byte alignment, and, compared to decoding the quantized coefficients,
hallucinating adds a negligible 12 instructions/18 cycles on the AMD RDNA™ GPU architecture
[Advanced Micro Devices, Inc. 2023]. Stored ZH3 coefficients have expectedly lower error; on
our test sets, solved-for ZH3 coefficients have a 27% reduction in error compared to curve-fit
hallucinated coefficients (44% compared to linear SH), making them the obvious choice for point-
sampled representations.
The situation is more complicated when considering interpolation properties. The ZH3 coef-

ficient is stored for the linear axis, and linear interpolation of the linear SH coefficients results
in nonlinear interpolation of the ZH3 coefficient. When interpolating coefficients of a non-linear
model, reconstruction artifacts can result if the data is not massaged [Iwanicki 2013], the parameter-
ization changed to filter linear quantities [Sloan and Silvennoinen 2018] or some of the non-linear
parameters fixed [Neubelt and Pettineo 2015]; thus, although ZH3 is mostly well behaved if the
zonal axis changes slowly, for sparse data ZH3 interpolation should be done by first expanding to
quadratic SH and then blending the results. This either carries a high per-pixel cost (if each probe
is fetched, expanded, and blended per-pixel) or more than doubles the memory and bandwidth
requirements relative to linear SH (if the ZH3 are decoded at runtime to quadratic SH stored in
hardware-interpolable textures). By contrast, if linear SH is interpolated at runtime and the ZH3
term is hallucinated from the ratio of linear to DC, interpolation of perpendicular linear SH will
naturally reduce that ratio, mimicking the results of expansion to SH3.3 While direct performance
comparisons are difficult,4 our heuristic is that hallucinated coefficients should be used where
linear SH would otherwise be used (improving reconstruction quality at low cost), and that stored
coefficients may be considered as a smaller on-disk representation where quadratic SH would
otherwise be used.
Rather than ZH3, we initially considered solving for a mixture coefficient between different

lighting models, or coordinates in the latent space of a neural network, but simply solving for or
hallucinating the quadratic ZH coefficient has a significant benefit: it simplifies the shaders while
still preserving all of the moments we care about. Storing linear SH and reconstructing the ZH axis
uses fewer coefficients and keeps a zonal (SRBF) structure.

3The least-squares fit ZH3 coefficient for aligned linear axes can be exactly linearly blended, while for the average of
equal-scale perpendicular linear SH the ZH3 coefficient should be scaled by 1

4 ; this means linear interpolation of the
ZH3 coefficient will overshoot for perpendicular linear SH. Interpolation is further complicated by antipodal linear SH
undergoing destructive interference where antipodal ZH3 constructively interfere.
4The performance impact depends on the GPU workload, but as a very rough estimate we see a 0.1ms performance difference
on a 4K opaque pass between hallucinated ZH3 and interpolated SH3 (from stored ZH3) on an NVIDIA RTX 2080 Ti.
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While using a shared luminance axis for the zonal term resolves false color shifting artifacts and
improves on the visual results, the motivation for why this is the case is not entirely clear. One
intuition is that when using the luminance axis we are treating the zonal axis as a colored light, and
so any color shifts will be correlated between color channels. Another is that, when the linear axes
diverge (e.g. in the case of directional lights oriented along perpendicular axes), the least-squares
fit for the ZH3 coefficient will generally be reduced, meaning the projection onto the luminance
axis acts as some form of windowing. Investigating this more rigorously is an interesting avenue
for future work.

5 CONCLUSIONS AND FUTUREWORK
We introduced a novel ZH3 format that bridges the gap between linear and quadratic SH, sig-
nificantly improving visual quality over linear SH with minimal extra storage or computation.
We discussed how to solve for ZH3, including how the linear SH parameters can be adjusted
to form a better zonal axis, and showed how using a shared luminance axis can minimize color
artifacts. We also used ZH3 to hallucinate higher frequencies from linear SH, improving irradiance
reconstruction compared to prior work in both accuracy and appearance.

For future work, further exploring ZH3 interpolation and the behavior of the shared luminance
axis are interesting directions. Additionally, our choice of the zonal quadratic SH basis function for
the zonal axis is not necessarily optimal; it would be worth investigating other basis functions along
that axis. Finally, the reasoning for hallucinating the ZH3 coefficient could equally be applied to
higher-order terms and other basis functions; even though higher-order SH terms have increasingly
minimal contribution to the irradiance, a more thorough investigation of this may be worthwhile.
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A SH COEFFICIENT BOUNDS FOR POSITIVE FUNCTIONS
Many signals that are dealt with in graphics (such as radiance, irradiance, and visibility) come from
strictly positive inputs. Monte-Carlo integration with projection into spherical harmonics involves
summing delta functions (the value in some sampled direction) with strictly positive weights;
this generalises to most integrals of positive functions. For spherical harmonics resulting from
the projection of a positive function, an upper bound on the ratio of the higher order coefficients
divided by the DC term 𝑓0 can be derived by looking at the coefficient ratios of a SH delta function
[Wiederien and Sloan 2022].5 The DC term 𝑓0 only grows when scaled by positive inputs, while
the higher frequencies can have either constructive or destructive interference. Assuming only
constructive interference, there is an upper bound ratio of

√
2𝐿+1
𝑓0

for the length of band 𝐿.6 The
bound only exists because DC is a constant strictly positive basis function and so only has perfectly
constructive interference; projecting a negative value results in destructive interference, resulting
in no general upper bound.
Tighter bounds also exist for individual basis functions, and can be derived by looking at the

SH projection of a delta function. For example, 𝑓 02 =

√︃
5

16𝜋 (3𝑧
2 − 1) has a maximum value of

√︃
5
4𝜋

when 𝑧 = 1 and a minimum value of −
√︃

5
16𝜋 when 𝑧 = 0; divided by the DC basis function 𝑌0 = 1

2
√
𝜋
,

5Because SH are closed under rotation, a rotation will never cause this ratio to change.
6This same analysis can be done using the Fourier basis on the circle.
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the bounds are [−
√
5
2 ,

√
5]. Using a similar analysis, it can be shown that the bounds are [−

√
15
2 ,

√
15
2 ]

for all other basis functions in the L2 band.

A.1 Encoding and quantization
This bound can be used to reduce the required storage for lighting signals. The DC coefficient is
stored in a high dynamic range (HDR) texture (11f/11f/10f, which can only encode positive values,
is a good candidate), and the values for higher-order bands are divided by the DC coefficient and
remapped according to the lower and upper bounds, yielding a [−1, 1] signal that can be stored in
low dynamic range (LDR) textures. If the input signal is known to represent irradiance, meaning the
L1 band has been scaled by the zonal irradiance factor 2

3 and the L2 band by 1
4 , these scale factors

should be included in the upper bounds. For lighting that is not going to be interpolated, using a
square root to encode the magnitude of the value and simply squaring after decode and preserving
the sign reduced the mean absolute error by half on an irradiance volume over a shipping level.

It is worth reasoning about what interpolation does to this non-linearly encoded signal, noting
that DC itself, the average value over the sphere, is interpolated linearly and is therefore exact. If
DC is constant between texels, there is no interpolation error. If the function is a zonal harmonic
(such as the projection of a light source where the direction to the light is not changing) the error
will be minor, as resulting from the non-uniform scaling of the vector. If both the direction and DC
are changing, linear interpolation would change directions slower compared to the normalized
result, but the actual arc traced out would be the same. In practice we have not noticed any visual
artifacts when switching to this encoding.

B DERINGING ZH3
We want to guarantee non-negative irradiance reconstruction with ZH3 coefficients. For this to
hold, we require that for 𝑧 ∈ [−1, 1] in the zonal frame,

1
2
√
𝜋
𝑓0 +

2
3

√︂
3
4𝜋
𝑓 01 𝑧 +

1
4

√︂
5

16𝜋
𝑓 02 (3𝑧2 − 1) ≥ 0, (22)

or, more simply,
1 + 𝑎𝑧 + 𝑏 (3𝑧2 − 1) ≥ 0, (23)

where 𝑎 =
2𝑓 01√
3𝑓0

and 𝑏 =

√
5𝑓 02
8𝑓0 . The bounds on 𝑎 and 𝑏 reduce to

𝑎 ≤
√
3,max

(
𝑎𝑧 − 1
3𝑧2 − 1

)
≤ 𝑏 ≤

√
5
4

for 𝑧 ∈ ( 1
√
3
, 1] . (24)

If 𝑎 >
√
3 there are no values of 𝑏 that will guarantee non-negativity across the domain, since

a large enough value for 𝑏 will introduce negative values around 𝑧 = 0 while too small will not
compensate for the negative values from the L1 lobe at 𝑧 = 1.

The maximum value of 𝑎𝑧−1
3𝑧2−1 in ( 1√

3
, 1] is given by 𝑎−1

2 , since for our range the function maximum
is always at 𝑧 = 1; therefore, we have

𝑎 − 1
2

≤ 𝑏 ≤
√
5
4
. (25)

Equivalently, if we substitute back in for our SH coefficients, we have

2
√
15
3

𝑓 01 − 4
√
5
𝑓0 ≤ 𝑓 02 ≤ 2𝑓0. (26)
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𝑓 02 and 𝑓 01 are here radiance coefficients; for irradiance reconstruction, the bounds on 𝑓 02 are
multiplied by the zonal cosine convolution scale 1

4 .
This analysis only applies when the zonal axes are aligned for both linear and ZH3; for diverging

axes more general windowing approaches [Sloan 2017] can be used.

C DERIVATIVES FOR GRADIENT-BASED ZH3 SOLVES
The error function derivative is required in the use of BFGS or related gradient-based search. The
analytic derivatives of the ZH3 error function 𝐸 defined in Equation 11 are as follows:

d𝐸
d𝑓

= 2

(
(𝑓 − 𝑡1)+

(
4𝜋
5

(
𝑡𝑇2 Y2 (A(𝑓 ))

)
Y2 (A(𝑓 )) − 𝑡2

)𝑇
(
4𝜋
5

(
Y2 (A(𝑓 ))𝑡𝑇2 + 𝑡𝑇2 Y2 (A(𝑓 ))

)
JY2JA

))
,

(27)

where JA is the Jacobian matrix of the axis function A(𝑓 ) and JY2 is the Jacobian matrix of Y2. A(𝑓 )
must return a unit vector.

The Jacobian matrix of Y2 is given by:

J𝑇𝑌2 =


𝛿𝑌2
𝛿𝑥

𝛿𝑌2
𝛿𝑦

𝛿𝑌2
𝛿𝑧

 =


√︃

15
4𝜋𝑦 0 0 −

√︃
15
4𝜋 𝑧

√︃
15
4𝜋 𝑥√︃

15
4𝜋 𝑥 −

√︃
15
4𝜋 𝑧 0 0 −

√︃
15
4𝜋𝑦

0 −
√︃

15
4𝜋𝑦

3
√
5√

4𝜋
𝑧 −

√︃
15
4𝜋 𝑥 0


. (28)

We define A(𝑓 ) to be a function mapping from an RGB linear spherical harmonic (represented
as a 4 × 3 matrix) to a 3D unit vector:

A(𝑓 ) = OptLin(LumSH(𝑓 )), (29)
where

LumSH(𝑓 ) =

𝑓 −11
𝑓 01
𝑓 11

 ·

𝑤𝑟

𝑤𝑔

𝑤𝑏

 , (30)

normalize(𝑥) = 𝑥

∥𝑥 ∥ , (31)

OptLin(𝑓 ) = normalize( [−𝑓 11 ,−𝑓 −11 , 𝑓 01 ]). (32)
For a fully shared luminance axis,𝑤 is defined to be e.g.𝑤 = [0.2126, 0.7152, 0.0722] (for sRGB);

for per-channel zonal axes𝑤 can be set to e.g.𝑤𝑟 = 1,𝑤𝑔 = 0,𝑤𝑏 = 0 for red.
The Jacobian matrix of A(𝑓 ) is given by

JA = JOptLin · JLumSH, (33)

JLumSH =


𝑤𝑟 𝑤𝑔 𝑤𝑏 0 0 0 0 0 0
0 0 0 𝑤𝑟 𝑤𝑔 𝑤𝑏 0 0 0
0 0 0 0 0 0 𝑤𝑟 𝑤𝑔 𝑤𝑏

 , (34)

JOptLin = Jnormalize (LumSH(𝑓 )) ·

0 0 −1
−1 0 0
0 1 0

 , (35)

Jnormalize (d) = ∥d∥−3

d2𝑦 + d2𝑧 −d𝑥d𝑦 −d𝑥d𝑧
−d𝑥d𝑦 d2𝑥 + d2𝑧 −d𝑦d𝑧
−d𝑥d𝑧 −d𝑦d𝑧 d2𝑥 + d2𝑦

 . (36)
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