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Fast Filtering of Reflection Probes
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Figure 1: We show the results of convolving a high-dynamic-range image using GGX filters of different roughness for each mip-level of a
cubemap. The results are an equal time comparison of our 8x3 sample quadratic method (top) and 32 importance samples with LOD selection
(bottom) shown beside analytically evaluated reference images (middle). The L1 errors are 0.0848 for our method and 0.4201 for importance
sampling. c©Peter Sanitra, http://noemotionhdrs.net, Creative Commons License.

Abstract
Game and movie studios are switching to physically based rendering en masse, but physically accurate filter convolution is
difficult to do quickly enough to update reflection probes in real-time. Cubemap filtering has also become a bottleneck in the
content processing pipeline. We have developed a two-pass filtering algorithm that is specialized for isotropic reflection kernels,
is several times faster than existing algorithms, and produces superior results. The first pass uses a quadratic b-spline recurrence
that is modified for cubemaps. The second pass uses lookup tables to determine optimal sampling in terms of placement, mipmap
level, and coefficients. Filtering a full 1282 cubemap on an NVIDIA GeForce GTX 980 takes between 160 µs and 730 µs with
our method, depending on the desired quality.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction

The reflection properties of materials are crucial for overall scene
appearance because the distribution of light reflected from a sur-
face determines not only the appearance of that surface, but reflec-

tions also indirectly light other surfaces. Recent movies and games
are moving away from ad-hoc lighting models towards physically
based rendering (PBR). Physically plausible reflection of light is
important even when a cartoon aesthetic is desired because fewer
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lights and less time is required for artists to make materials seem
like they fit in the environment.

General bidirectional reflection distribution functions (BRDFs)
are often too complicated to measure or evaluate, so simplified
models are used to represent reflection distributions. A commonly
used model is to characterize light as either diffusely or specularly
reflected. Diffusely reflected light penetrates the surface, scatters
internally, and is emitted equally in all directions. Specularly re-
flected light reflects directly off the surface like a mirror. Surfaces
appear glossy rather than mirror smooth because of small bumps
or roughness of the surface. Microfacet reflection models use dis-
tributions of surface normals to determine the directions that light
is reflected. Several models exist, but we focus on reproducing the
results of GGX [WMLT07].

To render images at 30 or 60 frames per second, games fur-
ther simplify specular reflection models. It is too costly to di-
rectly calculate the light field at every point on visible surfaces,
so incoming light is computed at a few important locations called
reflection probes. Whenever the location of a probe or the en-
vironment around it changes, the probe must be recalculated.
Glossy reflections are stored in a mipmap such that sharp reflec-
tions are stored in higher-resolution mips and blurry reflections
are stored in lower resolution mips. While rendering a surface, tri-
linear interpolation is used to approximate intermediate levels of
gloss [AG02, MEW∗13].

Filtering algorithms must be fast as well as accurate. Speed re-
quires that only a few samples are read per output texel. Our goal
is to use each sample as effectively as possible. Quickly filtering
cubemaps is important even during preprocessing. A typical level
in a game has on the order of a hundred probes and current filtering
methods can take seconds to accurately filter one probe [Man14].
Our algorithm takes less than a millisecond to produce a good ap-
proximation, which reduces the build time of a level by minutes
and enables real-time update of physically based reflections.

1.1. Related Work

Early work on BRDF approximation focused on metallic surfaces.
Specular reflections from metallic surfaces are the product of the
surface color and the incoming light. One method utilized this fact
to approximate the reflected light from arbitrary BRDFs as a prod-
uct of two cubemaps that are correspondingly sampled using the
surface normal and the reflection vectors [LK02]. The cubemaps
depend on the BRDF and are solved for using a regularized linear
solver and roughly correspond to the diffuse and specular compo-
nents of the reflected light. Most recent reflection models assume
dielectric materials, and in the case of a metal would simply multi-
ply the specular color by an auxiliary specular color map.

Approaches that are used to filter images in two dimensions are
not directly applicable to filtering cubemaps. There are a couple of
factors that make it difficult to filter cubemaps. One difficulty is that
it is necessary to filter across seams between faces of a cubemap.
Corners are challenging because there is no regular parameteriza-
tion where three faces meet. Another difficulty is that, although the
filter kernel is radially symmetric on a sphere, radial symmetry is
lost when projecting onto cube faces. The filter is anisotropic on

the cube, but most anisotropic filtering methods are designed to fil-
ter distorted box filters [HS99] or Gaussians [GH86]. Summed area
tables [Cro84,HSC∗05] can be used to approximate a filter by rect-
angular regions, but require high-precision. Summed area tables are
adequate for a coarse approximation, but accurately approximating
smooth filters with piecewise constant functions converges slowly.

Importance sampling is a common numeric integration tech-
nique in which points are sampled with a density that is approxi-
mately proportional to the function value. For example, the authors
of the GGX reflection model [WMLT07] describe an importance
function that can be used with their reflection model. The GGX
kernel has a long tail that is sparsely sampled by importance sam-
pling, but the tail contributes enough energy that undersampling
manifests as visible noise. Noise is particularly noticeable in en-
vironments with high dynamic range, which are common in PBR,
and thousands of point samples are needed per texel. Importance
sampling is inefficient for texture filtering because raster images
are band-limited, which results in the peak of the function being
oversampled.

When a large number of samples are taken, cubemaps can be
filtered more efficiently by directly reading texels rather than sam-
pling the cubemap as though it is an arbitrary function. Process-
ing texels in scanline order reads each texel once and has a cache-
friendly access pattern. It is wasteful to read texels where the filter
kernel has very small values, so angular extent filtering [IM05] win-
dows the kernel to some solid angle. A cone enclosing the filter is
projected onto cube faces and enclosed in bounding boxes. Texels
are then read in scanline order within the bounding boxes. GPU
calculations are accelerated by using cubemap lookups for solid
angles of texels and a radial filter fall-off table, but dense sampling
within angular bounds reads too many texels.

Kautz et al. [KVHS00] showed that it is efficient to downsample
an environment map into a mipmap hierarchy using a simple down-
sampling filter and then draw samples from the mipmap to evaluate
a more sophisticated filter. The CPU algorithm they presented used
recursive refinements that are impractical for GPU implementation.
The hardware accelerated algorithm they presented was simpler,
but did not use multiple levels of the mipmap or properly account
for projected filter sizes.

Given a fixed number of samples, a mip-hierarchy can also be
used with importance sampling [KC08]. The spacing between sam-
ples will be inversely proportional to the square root of the impor-
tance function, which can be used to sample from a mip-level that
was prefiltered with an appropriately wide kernel. This method as-
sumes that a box-filter is used to generate the mipmap and does not
consider the effect of the intermediate filter on the final image. In
our figures and tables that compare against importance sampling,
we are referring to this method.

Cardinality-constrained texture filtering (CCTF) [MS13, MS14]
uses non-linear optimization to precalculate a table of texel indices
and coefficients. CCTF combines basis functions from different
levels of a planar mipmap to approximate filter kernels, but its goal
is to create an interpolant that replaces trilinear interpolation with
one that is equally fast but higher quality. In contrast, our method
combines trilinear samples to approximate the GGX filter, which is
defined over a sphere. Filtering a kernel that is defined on a sphere
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over a cubemap requires that we correct for distortions that result
from mapping a sphere to a cube and requires a different solution
for each texel.

The irradiance kernel is the positive lobe of the cosine function
on a sphere. Spherical harmonics (SH) are well suited for represent-
ing low-frequency functions on a sphere [RH01] and are often used
to store irradiance. However, projecting irradiance into a low-order
SH basis is prone to ringing for HDR images [Slo08] and high-
order basis functions are expensive to evaluate. Rather than using
just a cubemap or SH, it is possible to combine both approaches
by storing SH coefficients in each texel of a cubemap [RH02]. This
combined approach is effective for representing anisotropic BRDFs
where two dimensions are used for cubemap lookup and two for SH
evaluation for the total of four dimensions of a BRDF. However, we
are evaluating a simplified, isotropic reflection model in this paper,
so we use a cubemap only.

2. Background

The outgoing radiance R(v) in the viewing direction v can be com-
puted by integrating the reflectance distribution f (l,v) of the in-
coming light field L(x) over the visible hemisphere H, which is
oriented along the surface normal n. For our purposes, L(x) is rep-
resented as a cubemap texture.

R(v) =
∫

H
L(l) f (l,v)(n · l) dl (1)

In the case of diffuse reflection, the reflection function is constant
for all directions and is modulated by the diffuse albedo cdi f f .

fdi f f (l,v) =
cdi f f

π

After substituting fdi f f into Equation 1, we can factor the equation
for diffusely reflected light as the product of the surface albedo
cdi f f times irradiance

∫
H

L(l)(n · l)
π

dl. (2)

We precalculate and store the irradiance for different view direc-
tions v in a cubemap. Evaluating irradiance can also be thought of
as convolving the light probe with a filter kernel equal to the posi-
tive lobe of the cosine function.

Specular reflections are more complicated and we summarize the
results from the paper that introduces GGX [WMLT07]. The gen-
eral Cook-Torrance microfacet model for specular reflection is

fspec(l,v) =
D(h)G(l,v,h)F(v,h)

4(n · l)(n · v) ,

where D(h) is the microfacet normal distribution, G(l,v,h) is the
geometric masking term, and F(v,h) is the Fresnel term. GGX pro-
vides a physically plausible definition for D(h) and G(l,v,h). A
simplified model of GGX that is often used in games [Laz11,Laz13,

Kar13] splits the integral into two parts.

R(v) =
∫

H
L(l)

D(h)G(l,v,h)F(v,h)
4(n · v) dl

≈
(∫

H
L(l)D(h) dl

)(∫
H

G(l,v,h)F(v,h)
4(n · v) dl

)

Values of the second term can be precalculated once because
they are independent of the light field. However, the first integral in
the split-sum approximation is the inner product of D(h) with the
light field L(l), which changes frequently. This integral can also be
thought of as convolving the light field L(l) with a filter, and we
investigate how to accelerate evaluating∫

H
L(l)D(h) dl. (3)

Note that D(h) is a function of l because h = l+v
|l+v| represents the

microfacet normal that is half-way between l and v. The microfacet
normal distribution D(h) is defined as

D(h) =
α

2X+(n ·h)
π((n ·h)2(α2−1)+1)2 ,

where α represents the roughness of the surface and X+(n ·h) is 1
in front of the surface and 0 behind.

When importance sampling Equation 3, we use the microfacet
normal distribution as the importance function. The angle of mi-
crofacet normals relative to the surface normal are calculated from
uniform random numbers ξ0,ξ1 ∈ [0,1] as

θ = 2πξ0

φ = tan−1

(
α
√

ξ1√
1−ξ1

)
.

Samples are then weighted by |l ·n|. The mip-level of an importance
sample is found from the ratio of the solid angles SA of the sample
and the texel. The solid angle of the sample SAsample is equal to the
size of a uniformly distributed sample divided by the importance
function. The surface area of a texel is the area of a cube face,
4, weighted by the differential solid angle, J(x,y,z), and divided
by the number of texels on the face, Resolution2. The Jacobian of
the projection from a [−1,1]3 cube to a unit sphere is J(x,y,z) =

1
(x2+y2+z2)3/2 .

SAsample =
4π

N D
( p+n
‖p+n‖

)

SAtexel =
4J(px, py, pz)

Resolution2

MipLevel =
1
2

log2

(
SAsample

SAtexel

)
(4)
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3. Overview of Method

Quickly evaluating filtered cubemaps in an interactive environ-
ment, requires our evaluation code to be simple and read few tex-
els. Our method is designed to be implemented on a GPU, so we
leverage the trilinear cubemap sampling provided by hardware. We
decompose filter convolution into two passes and precomputation
of a data-independent lookup table.

In the first pass, we quickly generate a rough approximation of
the final filtered result as a mipmapped cubemap. Relatively few
samples from this intermediate cubemap can then be used to pro-
duce a good approximation of the filter. This is analogous to a pre-
conditioner in linear algebra, where a simple transformation is ap-
plied to a linear system in order to get faster convergence.

In the second pass, we combine samples from the intermediate
cubemap to evaluate texels in the final filtered cubemap. For an
efficient GPU implementation, our filter is formulated as a gather
operation, where several texels are read for each output texel. It
is critical that the sampling pattern changes continuously between
output texels to reduce visual artifacts.

Complexity of the method is shifted away from evaluation and
into table generation. Locations, mip-levels, and weights of sam-
ples are stored as low-order polynomials in a precomputed coeffi-
cient table. This polynomial representation allows sampling pat-
terns to smoothly adapt to distortions from spherical projection
onto a cubemap. Because table generation is done once as an of-
fline process, we can optimize coefficients using an algorithm that
is slow but produces high-quality results.

4. First Pass: Downsampling

The first step of our method is to downsample the input cubemap
into a mipmap. The downsampled texels are a weighted combina-
tion of input texels, where the distribution of weights act as basis
functions bi(x) that we combine to reproduce a filter in the sec-
ond pass. Our downsampling algorithm must be fast because time
spent in the first pass reduces available time in the second pass.
Downsampling should also produce basis functions that have sim-
ilar characteristics to the target function B(x), so that few samples
are required in the second pass to reach acceptably low approxima-
tion error.

The standard recursive box filter is a special case of b-splines.
Specifically, the box filter is a 0-order b-spline, which has the re-
currence (1/2 1/2) [DB01]. The 2D recurrence needed for image
filtering is the tensor-product of the 1D recurrence. Box filters are
simple and fast, but combining samples from the resulting piece-
wise constant basis does not converge quickly in the second pass.
The next b-spline that can be used on a power-of-two grid is the
quadratic b-spline basis, which has the recurrence (1/8 3/8 3/8 1/8).
We tested mipmap filtering with up to a quartic basis and found
that quadratic b-splines give the best trade-off between speed and
quality.

Because quadratic b-splines are a 4× 4 tensor product, we can
efficiently evaluate the 16 texel footprint on a GPU using 4 bilin-
ear samples (a similar optimization applies to cubic filters [SH05]).
Consider the 1D case, of evaluating 1/8s1 + 3/8s2 + 3/8s3 + 1/8s4.

Figure 2: We show a graphical depiction of quadratic b-spline
downsampling. The black outlined cells show a quad of texels at
the corner of a cubemap face, such that the texel centers are at the
vertices of the dual grid shown in blue. The edges of the cubemap
face are drawn as dashed green lines, and the bilinear sample co-
ordinates are drawn as red dots. The red dots do not cross the face
boundary.

Figure 3: A 1D example of weight modification of quadratic b-
splines. On the left, we show basis functions weighted by the "Ja-
cobian", and on the right we show the "Jacobian" in blue with our
approximation overlaid in orange.

Given the function lerp(a,b, t) = (1− t)a+ tb, we can rewrite the
expression as 1/2(lerp(s1,s2,3/4)+ lerp(s3,s4,1/4). We do not need
to do anything special to filter across cubemap faces because the bi-
linear samples, shown as red dots in Figure 2, lie within the same
face. The GPU will perform the necessary coordinate transforma-
tions to read from and blend across cubemap edges.

Quadratic b-splines are smooth, but the projection of a constant
function over a sphere onto a cubemap is not smooth between faces.
To get a basis that better approximates a constant over a sphere,
we weight each of the samples in the b-spline recurrence by the
Jacobian, J(x,y,z). Weighting samples by the Jacobian has the de-
sired effect of giving less weight to corners and edges, and produces
functions that are smooth everywhere except for at edges.

We demonstrate the idea of weighting by the Jacobian on a 1D
function that has a similar shape to J(x,y,z) in Figure 3. The basis
functions have different shapes depending on their position and the
middle functions have a non-smooth bend, which allows us to ap-
proximate non-smooth objective function well. The boundary does
not match because we did not use a periodic boundary condition
when calculating basis functions for this demonstration figure.

In practice, we modified the weighting function to not quite
multiply by J(x,y,z), because the distortion to the basis functions
was too strong. We found that we got lower error by blending the
Jacobian with a constant function 1/2(1 + J(x,y,z)). Individually
weighting each of the 16 texels in the cubemap recurrence is not
possible when using bilinear texture reads. We weight the 4 bi-
linear samples instead, which is faster but results in subtle non-
smoothness over the function. We tried offsetting the positions and
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Figure 4: Different basis functions reproducing the GGX kernel of
a rough surface using our 8x3 sample quadratic fit. A good set of
basis functions can significantly reduce error, especially when com-
bining a low number of samples.

Figure 5: A depiction of the weights of the three frames in a t-
projection of a cubemap. The weights of the x,y,z axial frames are
shown in the r,g,b color channels respectively.

weights of the bilinear parameters to better approximate the 16
texel weights, but calculating the bilinear offsets was too expensive
relative to the resulting benefit.

We compare the reconstruction of a large filter kernel using dif-
ferent basis functions in Figure 4. The discontinuous box func-
tion is not suitable for reproducing a continuous function. The un-
weighted quadratic basis performs better than the box basis, but
cannot accurately reproduce the reduced values at the edges of the
cube. Both of the weighted quadratic bases reproduce the edges
more accurately and the basis functions with coarse weights look
almost the same as the more accurately weighted functions.

5. Second Pass: Filter Approximation

The second pass of our algorithm combines multiple trilinear sam-
ples from the mipmapped cubemap to approximate the ideally fil-
tered results. We define sample offsets in a polar frame that changes
smoothly everywhere except for point discontinuities at the poles.
The position of a sample is defined by its offset with respect to
the coordinate system x̂, ŷ, ẑ of the output texel. Given the direction
ẑ = n̂ toward the texel and a polar axis â, we define the tangent
frame as x̂ = normalize(â× ẑ), ŷ = normalize(â− ẑ(â · ẑ)). This
tangent field has singularities at ±â, which we would like to avoid.
Each tangent field is weighted such that faces that do not intersect
the pole have a value of one and large portions of the faces that
intersect the pole are zero and change continuously.

θ

ϕ

-1
1

0

1

-1

0

-1

1
ϕ

ϕ

θ

Figure 6: The parameterization of the cube. The coordinates change
linearly along each line. There are discontinuities in θ at vertical
edges of the cube, but φ changes continuously from 0 to -1 to 1 and
back to 0 when tracing from bottom to top.

We remove point discontinuities by overlapping three polar pa-
rameterizations that are oriented along the Cartesian axes. Each pa-
rameterization has a weight that is one at the equator and zero near
the poles as shown in Figure 5. Without loss of generality, assume
that a texel in the cubemap has coordinates n̂ = (nx,ny,nz) and that
the pole is along the z-axis. We define the weight of the frame as
W f rame(n̂) = saturate(4 max(abs(nx),abs(ny))−3). One can think
of a cube face as being divided into 8× 8 tiles. The center 36 tiles
have contributions from 2 frames, and the remaining 28 edge tiles
have contributions from 3 frames. Because of the regular tiling be-
tween cases, most thread groups on a GPU will have coherent con-
trol flow.

Each frame has N independently controlled samples, and each
sample has 5 parameters: the offset within the frame (xi,yi,zi),
the mip-level li, and the weight wi of the sample. The position
of the sample p is defined within the frame coordinates as p =
xix̂+ yiŷ+ ziẑ. The weights are encoded prior to multiplication by
the frame weight, and after all of the samples are taken, the weight
is normalized to ensure reproduction of constant colors. The texel
color is calculated as

∑
2
f rame=0 W f rame(n)∑

N−1
i=0 wi sample(p, li)

∑
2
f rame=0 W f rame(n)∑

N−1
i=0 wi

.

The sampling function applies a mip-level offset that is a function
of the sampling position and adjusts for the Jacobian of the sphere
to cube mapping. This offset is simply the contribution of the Jaco-
bian factored out of Equation 4.

In addition to increasing the number of samples, we can reduce
error by having the sampling parameters change as a function of the
output texel’s position. Better spatial adaptation more accurately
accounts for the nonuniform projection of a filter onto the cube-
map. We add spatial adaptation by evaluating each of the sample
parameters as a low-order polynomial of the parameters θ,φ de-
fined over the cube as shown in Figure 6. Going counter-clockwise
around the pole, θ changes linearly from -1 to 1 across each face,
and φ changes linearly from -1 at the bottom of a side to 1 at the
top.

The φ coordinate reflects at the top and bottom edges of the cube,
such that φ is 0 at the poles and changes linearly to connect contin-
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uously at the edges. This reflection of φ is meant to represent the
fact that projective warping is symmetric across edges. The top and
bottom faces have very little weight, so we use this reflection trick
rather than adding more degrees of freedom to properly handle the
top and bottom faces.

Continuity of the preimages themselves is unimportant for con-
tinuity of the image. Rather, we must ensure that the preimages
change continuously between neighboring texels for the filtered im-
age to be continuous. The parameterization from -1 to 1 for each
face is naturally continuous for symmetric functions, such as even
powered monomials. Odd powered monomials are not symmetric,
but a polynomial is continuous when coefficients of the odd pow-
ers sum to zero. In the case of a quadratic, the continuity constraint
means that linear functions are unused.

6. Precomputation: Coefficient Table Optimization

The polynomial parameters for sample placement are stored in a
table that is calculated offline. The contents of the table are inde-
pendent of image data, so the table only needs to be calculated once.
We therefore focus on reducing the perceived error as much as pos-
sible, at the cost of a lengthy optimization.

Integrals for the diffuse (Equation 2) and specular (Equation 3)
filters are defined over a hemisphere, but we operate in the domain
of cubemaps. For each texel, we use B(x) to represent the projection
of the filter associated with the texel onto the cubemap. In the case
of specular filters, the roughness of the glossy reflection varies with
the mipmap resolution. The projection of D(h) onto the cubemap
produces a filter that has anisotropic distortion and wraps across
faces, which has a different optimal solution for each texel.

Every texel, indexed by i, in the intermediate mipmap has a
contribution bi(x) from the input texture. The color of a filtered
texel

∫
L(x)B(x) dx is the integral of the preimage of the filter B(x)

times the light field L(x). In particular, B(x) is the projection of the
GGX or irradiance kernels. The color of a texel in the intermediate
mipmap is equal to

∫
L(x)bi(x) and we would like to find a sum of

texels in the mipmap weighted by coefficients ci that approximate
the color of the texel filtered by B(x).∫

L(x)B(x) dx≈∑
i

ci

∫
L(x)bi(x) dx

Rearranging the equation, we find that the light field L(x) is a com-
mon factor. ∫

L(x)
∣∣∣∣B(x)−∑

i
cibi(x)

∣∣∣∣ dx≈ 0

The intensity L(x) of the light at a point x weights the importance
of approximating the preimage B(x) at x. We therefore remove L(x)
from the equation to find an approximation that is not specialized
to a particular light field [MS13].∫ ∣∣∣∣B(x)−∑

i
cibi(x)

∣∣∣∣ dx≈ 0

Instead of directly solving for the coefficients ci, we solve for pa-
rameters of trilinear samples. Each trilinear sample contributes a
fraction of its weight to up to eight texel coefficients.

There are several ways to measure the error between a pair of
preimages, of which, the L2 measure is most common. Minimizing
L2 error will approximate the peak of a function well, but at expense
of approximating the tail poorly. Unfortunately, the tail of the GGX
filter collects a significant amount of energy spread over a large
area. We found that L1 is a more perceptually relevant measure
because small errors that accumulate over a large area are equally
important to the output texel color as large errors accumulated over
a small area. Minimizing an L1 objective function is significantly
more expensive than L2, but spending the extra time for improved
quality is worthwhile.

For each texel in the output image, we measure error by com-
paring the preimage of our approximation to the reference preim-
age. To calculate the preimage of our approximation, we initialize
a mipmap of weights to be zero. Each of the N trilinear samples
adds its contribution into 8 texels in the mipmap. Then, we use the
recurrence relation to calculate the weights in successively higher
resolutions of the mipmap until all of the weights are in the highest
resolution of the mipmap. This can be thought of as the inverse of
the mipmap generation described in Section 4.

Sampling patterns are initialized with importance sam-
pling [KC08], which we then optimize using the BFGS algo-
rithm [LN89] with golden section line searches and numerically ap-
proximated gradients. BFGS works reasonably well despite the L1
error metric having discontinuous gradients [LO08]. The interac-
tion between samples from the three axial frames is complex even
in the case of constant sampling parameters, and requires optimiza-
tion over many texels. Rather than measuring the error at every
texel in the output cubemap, we use a sparse sampling so that every
mip-level takes approximately the same amount of time to compute
despite the number of texels being exponential in level.

7. Results

7.1. Analysis of Time and Error

We show results from filtering four example HDR scenes in Fig-
ure 7 with different lighting conditions. When we specify that
Nx3 samples are used by our method, we mean that each of the
3 coordinate frames may read up to N trilinear samples from the
mipmapped cubemap that is generated by the first pass (39/16 N
samples on average). We compare the filtered images calculated
with 32 importance samples and our 8x3 sample quadratic method
because both methods take an equal time of 200 µs to compute. The
first scene is taken during the day with a clear sky so that the sun is
bright and directly visible, whereas the sun is setting and dimmer in
the second scene. The third scene shows the interior of a building,
and the the fourth image is of a city at night. Because it is difficult
to see differences between adjacent images, we show component-
wise, absolute differences from the reference and write the L1 error
next to the difference image. The importance sampled images tend
to be too hazy, and highlights are often slightly off-center.

The characteristics of the filters are more apparent in synthetic
point-response functions. Cubemaps are not spherically symmetric,
so we show the response from a texel in the center of a face, in the
middle of an edge, and at a vertex in Figure 8. Given equal com-
putation time, the importance sampled filter has noticeably lower
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Quad. 8x3 Reference IS 32
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Figure 7: Equal time comparison of our quadratic method with 8x3 samples (left) vs. 32 importance samples (right), and reference images
(center) of mip-levels 1 and 3. L1 errors are shown next to difference images that are one minus the absolute value of the difference between
neighboring images (white means no error). Values are scaled to fill the dynamic range, and the same scale is applied to our method and
importance sampling. c©Peter Sanitra, http://noemotionhdrs.net, Creative Commons License.

quality. Because the importance samples are asymmetric, the point
response function is noticeably off-center.

Our goal was to make an algorithm that quickly approximates
cubemap filters with sufficient accuracy for real-time applications,
which makes it important to understand the trade-off between speed
and accuracy. We report the computation time and errors of impor-
tance sampling compared to our method using different numbers of
samples in Table 1. We give the times for filtering all six faces of a
1282 source cubemap into the 1282−22 mip levels of the destina-

tion cubemap. All timings were measured on an NVIDIA GeForce
GTX 980 using DirectX time-stamp queries.

Our algorithm relies on precalculated tables for its speed, which
can take a few days to generate on a workstation. To be fair, we also
precalculate tables for importance sampling. These tables circum-
vent random number generation and several transcendental func-
tions that would otherwise be required to importance sample a
GGX filter, while generating identical results. For each importance
sample, we pack the microfacet normal l relative to the local frame
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Figure 8: Result of filtering images with a single non-zero input
texel located in the center, on the edge, and in the corner of a cube-
map face. The third mip-level is shown for each input with the ref-
erence, IS 32, and Quad 8x3 filters.

Ours Time Error IS Time Error
Const. 8x3 162 µs 0.1111 IS 32 203 µs 0.4201
Const. 16x3 263 µs 0.0815 IS 64 374 µs 0.2976
Const. 32x3 575 µs 0.0613 IS 128 772 µs 0.2233
Quad. 8x3 224 µs 0.0848 IS 1K 6.18 ms 0.0887
Quad. 16x3 480 µs 0.0656 IS 2K 12.2 ms 0.0658
Quad. 32x3 726 µs 0.0506 IS 4K 24.2 ms 0.0500

Table 1: Median time over 101 trials to GGX filter all mips of a
1282 cubemap using importance sampling and our method. Aver-
age L1 fitting errors exclude level zero for fair comparison.

and the solid angle of the sample into a float4. A further optimiza-
tion one could perform for any filtering algorithm, but that we did
not, is to copy the highest resolution level rather than filtering it.
This would mean the highest resolution mip represents a perfect
specular reflection and would reduce the processing time of the sec-
ond filtering stage by a factor of approximately four.

The errors in Table 1 measure the L1 error of the filter approx-
imation itself. This is in contrast to the data-dependent errors re-
ported in Figure 8. We exclude level 0 from the average error to not
unfairly penalize importance sampling. Because we sample from
a 1282 into a 1282 image using bilinear samples, naïve imporance
sampling results in an additional convolution by the 1282 resolu-
tion bilinear reconstruction filter, which prevents convergence for
very small GGX filter kernels as shown in Table 2. Our method op-
timizes for reproduction of the preimage that results from trilinear
filtering, so automatically accounts for this extra convolution. Note
that importance sampling does not suffer from this aliasing prob-
lem if the input image is of sufficiently higher resolution than the
output images.

A very rough specular reflection is nearly identical to a diffuse
reflection. In typical image processing, a Fourier transform can be
used to quickly convolve an image by a large kernel in the fre-
quency domain. Likewise, spherical harmonics can be used to con-
volve images over a sphere, but are only practical to use for very
large kernels such as the clamped cosine used to evaluate irradi-

Quad. 32x3 IS 4096
Level 0 0.0495 0.2484
Level 1 0.0461 0.0502
Level 2 0.0516 0.0375
Level 3 0.0410 0.0517
Level 4 0.0394 0.0521
Level 5 0.0502 0.0512
Level 6 0.0758 0.0575

Table 2: Average fitting errors for the GGX filter evaluated using
4096 importance samples and our quadratic 32x3 filter.

Ours Time Error SH Time Error
Const. 8x3 131 µs 0.1460 SH 3 87 µs 0.1227
Const. 16x3 211 µs 0.1186 SH 5 149 µs 0.0593
Const. 32x3 397 µs 0.0933 SH 7 246 µs 0.0358
Quad. 8x3 224 µs 0.1181 SH 9 376 µs 0.0243
Quad. 16x3 419 µs 0.0996 SH 11 585 µs 0.0177
Quad. 32x3 651 µs 0.0793

Table 3: Fitting error for irradiance with our new method and with
spherical harmonics.

ance. We compare the speed and quality of our method against
spherical harmonics to evaluate irradiance in Table 3. We modi-
fied a code generator to only generate the non-zero bands used to
convolve with a clamped cosine kernel [Slo13]. These results show
that spherical harmonics have significantly lower error given equal
time. Although it is more efficient to convolve large kernels in the
frequency domain, spherical harmonics are unusable for small ker-
nels, and it may still be desirable to use our sampling algorithm for
all filters to reduce code complexity.

7.2. Implementation details

The first stage of mipmap generation has a dependency chain where
each level depends on the next higher resolution level. The 642 mip
is processed in 10µs and the subsequent levels are each processed
in 5µs for a total of 40µs. Few texels are processed for the lower
resolutions, and the shader is quite simple, so the GPU is mostly
idle for the smaller mip-levels. Although it is not possible to re-
duce latency, the first stage can share the GPU as an asynchronous
compute job, or we could process batches of cubemaps to increase
throughput.

Unlike the first stage, the second stage has no dependencies be-
tween mip-levels, so we can saturate the GPU by processing all
mip-levels and faces of the cubemap in one dispatch. We organized
the computation so that each thread processes one output texel in
a nested loop over the three frames and the N samples. Grouping
threads as squares of texels maximizes control flow coherency so
that little work is wasted.

If throughput is more important than latency, it is possible to
process batches of cubemaps to amortize the cost of table lookups,
calculation of local frames, and polynomial evaluations. Amortiz-
ing computations that are independent of the value of input texels
is possible with other methods besides ours. For example, the com-
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putations that evaluate spherical harmonic basis functions can be
shared. However, the most expensive part of evaluating a spherical
harmonic on a GPU is the reduction of summing the contribution
from each texel, so the benefit of amortization is less clear.

8. Conclusion

We have presented a method for quickly evaluating filters over
cubemaps. If a cubemap is already used to store glossy reflections
for an object, it is worth considering also storing irradiance in one
of the low-resolution mips. Our method can optimize for any ker-
nel, including the irradiance kernel, so our method is a unified ap-
proach for specular and diffuse lighting.

Our method works well for situations where it is okay to sacri-
fice some accuracy for fast evaluation. Specifically, this method has
been deployed in the content pipelines of two shipping games and
is being integrated into others. The main drawback of our method
is that precalculating coefficient tables is slow and our optimiza-
tion is easily trapped in local minima. As the number of samples
increases, the polynomial order for coefficients will start to limit
accuracy, so it will be necessary to use higher-order polynomials
which entails larger tables, more precalculation, and slower shader
evaluation. Scaling to large sample counts to get a very accurate
filter is therefore impractical.

Combining texture samples with our method produces high-
quality results when convolving small filter kernels such as GGX
reflections with medium to high-gloss, whereas spherical harmon-
ics are effective for convolving by large kernels such as the irradi-
ance kernel. An interesting avenue of research would be to com-
bine the two methods for medium to low-gloss. Spherical harmon-
ics could be used to capture the large-scale features of the function
and texture sampling could then be used to reduce the residual.

A common property of the data captured in a cubemap is that
there are often only a few texels that are exceptionally bright. For
example, the sun or light bulbs are small spots of intense light that
are prone to revealing sampling artifacts. An interesting extension
would be to remove those bright sources from the image and pro-
cess them analytically. The remaining image would have relatively
low dynamic range and could be processed with the method de-
scribed in this paper.
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